Lucas Ninno/Getty Images
Once considered a disease of the affluent, hypertension now affects a third of all adults. The WHO wants nations to get organized to combat it. The World Health Organization (WHO) is taking on the world’s worst killer, laying out its first plan to conquer hypertension—a level of high blood pressure that affects one in every three adults globally. That figure has doubled since 1990. It’s now up to 1.3 billion people.
High blood pressure might sound like a disease of rich nations, but in a report released today during the United Nations General Assembly, the WHO said that three-fourths of people living with hypertension reside in low- and middle-income nations. Nearly half of them have no idea they have the condition, which causes heart attacks, kidney disease, and stroke. Four-fifths of them, including both people with a diagnosis and those who don’t know they are affected, aren’t getting adequate treatment to control it.
If that could be improved, the agency said, 76 million lives could be saved between now and the year 2050. “There are some health issues for which we lack knowledge or effective tools,” said Tedros Adhanom Ghebreyesus, the WHO’s director general—who has been open about controlling his own high blood pressure with medication—during a briefing in New York City. “Hypertension is not one of them. We have the tools. Every country can do more to use those tools.”….Continue reading….
By:
Source: High Blood Pressure Is the World’s Biggest Killer. Now There’s a Plan to Tackle It | WIRED
Critics:
Hypertension, also known as high blood pressure, is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms.[1] It is, however, a major risk factor for stroke, coronary artery disease, heart failure, atrial fibrillation, peripheral arterial disease, vision loss, chronic kidney disease, and dementia. Hypertension is a major cause of premature death worldwide.
High blood pressure is classified as primary (essential) hypertension or secondary hypertension. About 90–95% of cases are primary, defined as high blood pressure due to nonspecific lifestyle and genetic factors. Lifestyle factors that increase the risk include excess salt in the diet, excess body weight, smoking, physical inactivity and alcohol use. The remaining 5–10% of cases are categorized as secondary high blood pressure, defined as high blood pressure due to an identifiable cause, such as chronic kidney disease, narrowing of the kidney arteries, an endocrine disorder, or the use of birth control pills.
Blood pressure is classified by two measurements, the systolic and diastolic pressures, which are the maximum and minimum pressures, respectively. For most adults, normal blood pressure at rest is within the range of 100–130 millimeters mercury (mmHg) systolic and 60–80 mmHg diastolic. For most adults, high blood pressure is present if the resting blood pressure is persistently at or above 130/80 or 140/90 mmHg. Different numbers apply to children. Ambulatory blood pressure monitoring over a 24-hour period appears more accurate than office-based blood pressure measurement.
Hypertension is twice as common in people with diabetes as contrasted with people who don’t have diabetes. Lifestyle changes and medications can lower blood pressure and decrease the risk of health complications. Lifestyle changes include weight loss, physical exercise, decreased salt intake, reducing alcohol intake, and a healthy diet. If lifestyle changes are not sufficient, then blood pressure medications are used. Up to three medications taken concurrently can control blood pressure in 90% of people.
The treatment of moderately high arterial blood pressure (defined as >160/100 mmHg) with medications is associated with an improved life expectancy. The effect of treatment of blood pressure between 130/80 mmHg and 160/100 mmHg is less clear, with some reviews finding benefit and others finding unclear benefit. High blood pressure affects between 16 and 37% of the population globally. In 2010 hypertension was believed to have been a factor in 18% of all deaths (9.4 million globally).
Severely elevated blood pressure (equal to or greater than a systolic 180 or diastolic of 120) is referred to as a hypertensive crisis. Hypertensive crisis is categorized as either hypertensive urgency or hypertensive emergency, according to the absence or presence of end organ damage, respectively. In hypertensive urgency, there is no evidence of end organ damage resulting from the elevated blood pressure. In these cases, oral medications are used to lower the BP gradually over 24 to 48 hours.
In hypertensive emergency, there is evidence of direct damage to one or more organs. The most affected organs include the brain, kidney, heart and lungs, producing symptoms which may include confusion, drowsiness, chest pain and breathlessness. In hypertensive emergency, the blood pressure must be reduced more rapidly to stop ongoing organ damage, however, there is a lack of randomized controlled trial evidence for this approach.
Hypertension results from a complex interaction of genes and environmental factors. Numerous common genetic variants with small effects on blood pressure have been identified as well as some rare genetic variants with large effects on blood pressure. Also, genome-wide association studies (GWAS) have identified 35 genetic loci related to blood pressure; 12 of these genetic loci influencing blood pressure were newly found. Sentinel SNP for each new genetic locus identified has shown an association with DNA methylation at multiple nearby CpG sites.
These sentinel SNP are located within genes related to vascular smooth muscle and renal function. DNA methylation might affect in some way linking common genetic variation to multiple phenotypes even though mechanisms underlying these associations are not understood. Single variant test performed in this study for the 35 sentinel SNP (known and new) showed that genetic variants singly or in aggregate contribute to risk of clinical phenotypes related to high blood pressure.
Blood pressure rises with aging when associated with a western diet and lifestyle and the risk of becoming hypertensive in later life is significant. Several environmental factors influence blood pressure. High salt intake raises the blood pressure in salt sensitive individuals; lack of exercise and central obesity can play a role in individual cases. The possible roles of other factors such as caffeine consumption, and vitamin D deficiency are less clear. Insulin resistance, which is common in obesity and is a component of syndrome X (or the metabolic syndrome), also contributes to hypertension.
Events in early life, such as low birth weight, maternal smoking, and lack of breastfeeding may be risk factors for adult essential hypertension, although the mechanisms linking these exposures to adult hypertension remain unclear. An increased rate of high blood uric acid has been found in untreated people with hypertension in comparison with people with normal blood pressure, although it is uncertain whether the former plays a causal role or is subsidiary to poor kidney function. Average blood pressure may be higher in the winter than in the summer. Periodontal disease is also associated with high blood pressure.
In most people with established essential hypertension, increased resistance to blood flow (total peripheral resistance) accounts for the high pressure while cardiac output remains normal. There is evidence that some younger people with prehypertension or ‘borderline hypertension’ have high cardiac output, an elevated heart rate and normal peripheral resistance, termed hyperkinetic borderline hypertension. These individuals develop the typical features of established essential hypertension in later life as their cardiac output falls and peripheral resistance rises with age.
Whether this pattern is typical of all people who ultimately develop hypertension is disputed. The increased peripheral resistance in established hypertension is mainly attributable to structural narrowing of small arteries and arterioles, although a reduction in the number or density of capillaries may also contribute. It is not clear whether or not vasoconstriction of arteriolar blood vessels plays a role in hypertension. Hypertension is also associated with decreased peripheral venous compliance which may increase venous return, increase cardiac preload and, ultimately, cause diastolic dysfunction.
Pulse pressure (the difference between systolic and diastolic blood pressure) is frequently increased in older people with hypertension. This can mean that systolic pressure is abnormally high, but diastolic pressure may be normal or low, a condition termed isolated systolic hypertension. The high pulse pressure in elderly people with hypertension or isolated systolic hypertension is explained by increased arterial stiffness, which typically accompanies aging and may be exacerbated by high blood pressure…
Related contents:
- Preferences and willingness-to-pay for a blood pressure telemonitoring program using a discrete choice experiment
- US task force calls for increasing blood pressure screenings during pregnancy
Marketing Programs You May Like: