Advertisements

Michigan Man Discovers Strange Glowing Rocks In The Upper Peninsula – Trevor Nace

1.jpg

A Michigan man made the discovery of a lifetime when he stumbled on glowing rocks on the beaches of Lake Superior. The rocks, which he named “Yooperlites” emit an eerie glow, appearing to be partially molten rock. Rintamaki, a gem and mineral dealer, made this discovery after hunting for rocks in Michigan’s Upper Peninsula, bringing with him a black light. The black light helps illuminate the glowing rocks, which he says litter the Lake Superior beach……

Read more: https://www.forbes.com/sites/trevornace/2018/09/17/michigan-man-discovers-strange-glowing-rocks-in-the-upper-peninsula/#27d7726f23ff

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

Advertisements

A Tale of Two Communities – People & Fish – Recovering from Harvey By Larry McKinney

1.jpg

One year after Hurricane Harvey hammered the Texas coast, divergent pictures of recovery and resilience have emerged. The coastal marine communities of fish, shrimp and crabs that thrive along our Gulf coast, are dynamic, resilient and on the mend. The coastal human communities are also dynamic but their resilience is being challenged.

The coastal marine community has an important advantage over coastal human communities — millions of years of evolution driven by hurricanes. Hundreds of hurricanes have entered the Gulf of Mexico since we started keeping track of them, and the Coastal Bend has seen its share. The plants, animals and even the physical landscape of the coast are shaped by hurricanes. It’s survival of the fittest, as the animals so fundamental to ecosystem health — the shrimps, crabs and fish such as red drum and spotted seatrout — all have life cycles that respond well to hurricane-induced stress.

Hurricanes are the giant cement mixer: nutrients and sediments are resuspended, mixed up and flushed from inland reaches into bays and estuaries. Freshwater mingles with saltwater and vice versa. The physical environment also changes; some habitats, like oyster reefs and seagrass meadows, can be buried. Deep pockets scattered across otherwise shallow coastal flats fill in, new ones form, and as the hurricane passes, barrier island passes open and close.

Harvey was different from most hurricanes in that it hit the Texas coast twice. It stalled after landfall, hung around Victoria, then went back into the Gulf over San Antonio Bay, where it sucked up more water, heat and power, moved northeast and slammed into Houston, dumping unforeseen amounts of water over the metropolitan and neighboring areas. The result was really two storms: South Texas had to deal with wind, waves and storm surge, especially from the bayside, but northeast Texas had to deal with massive floods.

The combination of winds, storm surge, low salinity, and low dissolved oxygen had devastating effects on coastal habitats up and down the Texas coast. Floods dumped unprecedented freshwater carrying huge quantities of organics into bays, causing extensive hypoxia. Despite the stress, coastal habitats showed signs of recovery by spring 2018, followed by a genuine bloom through summer.

We saw a burst of new life, particularly in South Texas, as the bays filled with huge schools of juvenile fish. Spotted seatrout grew fat and lazy with so much bounty. Over the next several years the marine ecosystem, as well as anglers and seafood lovers, will reap that bounty. The renewal is reminiscent of a forest fire, which is initially devastating, but recovery brings back a boom of new life.

Our coastal communities also respond with immediacy to hurricanes. While we have not been around so long as the fish and shrimp, we have learned how to survive on the edge of the sea. Our abilities to predict a hurricane’s course and energy has increased impressively, and the emergency responses of coastal leaders and communities are nothing short of heroic. The rush to aid by all after Harvey was inspiring, renewing faith in our neighbors both near and far.

However, as Texas communities continue to recover, our human systems for social support, economic recovery and governance of public resources have faltered. This is particularly evident in South Texas, where we lack the capacity of large cities like Houston. Even there, some neighborhoods are failing to recover from this unprecedented natural disaster.

Our political leadership can muster funding, both short term and for the long haul, but when they leave the coast for their various seats of government and bureaucracy takes over, recovery efforts can break down. Judges, mayors, county commissioners and local leaders have their hands full meeting the immediate needs of their citizens. Adding another “job” to a long list simply does not work.

2.jpg

The sheer complexity of recovery is mind-boggling. There are dozens of federal, state, philanthropic and private programs offering assistance. However, there is no one-stop shop spanning very different recovery issues. Tough issues persist, such as renters who lost housing; individuals struggling with mental health through recovery; communities trying to rebuild schools and bring back families that have moved away; small businesses that need a jumpstart to rebuild local economies on a shrinking tax base; and what to do when critical infrastructure is privately owned and does not qualify for federal assistance.

Acquiring the planning capacity needed to navigate this complexity while making sure communities are building back in a safer, more resilient way adds further burden. Even in a community like Rockport, which has invested in dedicated staff to address these issues, recovery will be hard-fought for years to come. For those communities that could not make such an investment, the road is hard indeed.

To build long-term resilience, we must better understand the complexities of recovery programs and resources; link them with coastal communities through careful planning that addresses future risks; and integrate these efforts with the environment of which we are a part.

Hurricanes are a reality of coastal life, and people are now part of that coastal ecosystem. If we are to live and thrive on our coastal margins we have understand and adapt to that reality and secure the capital needed to plan for our resilient future. We have a lot to learn from the fishes.

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you
https://www.paypal.me/ahamidian

Engineering, Bioplastics Firms Debut ‘Cutting Edge’ Algae Removal Process – Ryan Dailey

1.jpg

Florida’s problem with algal blooms has taken center stage, and efforts to mitigate it are in high demand. A partnership between two engineering and bioplastics companies aims to bring a new type of solution to the market. One Florida county is already trying it out.

Lee County isn’t the only in Florida, or even in the U.S., with an algal bloom problem. Captains for Clean Water co-founder Daniel Andrews has been keeping an eye on the situation locally.

“What we see now is an ongoing red tide bloom. All these nutrients that are coming from the water from Lake Okeechobee, the cyanobacteria bloom, from the on-the-ground perspective, it appears to be compounding and making it significantly worse. What we’re seeing is collapse,” Andrews told WGCU’s Julie Glenn. “And what we need is solutions, long-term solutions, that will allow this estuary an opportunity to recover.”

Lee County is one of the first to use a system of algae removal developed by global engineering firm AECOM, recently named by Bloomberg as the world’s largest. With about $700,000 in funding from the state’s Department of Environmental Protection, the county is contracting with AECOM.

Dan Levy, the firm’s vice president, says the technology has been in the works for some time.

“A lot of effort has been put forward on the academia side, on research and studying it. What we’re trying to do now is bringing it to the field,” Levy said. “And that led us to the development of these semi-permanent systems that could be put into these areas that have nutrient-impacted lakes – eutrophic lakes, where we have an excessive amount of nutrients – to go in there and do something that we consider to be short time. Meaning (in) six months, a few years, and we can reduce enough of the nutrients to restore the lake back to its healthier state.”

AECOM has already done work in North Fort Myers and in Cape Coral’s Nautilus Canal.

As Levy explains, the process removes the rich element of algae cells from what’s called the phototropic zone.

“As we pull the water out from this phototrophic zone, it’s going to go into a containment system that has micro-bubbles on the bottom,” Levy said. “So as the water’s there, we’re going to be adding a polymer to it that will allow it to bind up the algae cells. And this microbubble system on the bottom will create essentially a lift to allow these now foreign particles to float up to the top.”

And that, according to Levy, is when the algae can be removed.

“We’re then able to essentially skim off that top layer, and the remaining water is then filtered and returned back,” Levy said.

The recovered algae biomass is put into a storage unit. Then, the question facing Levy and others is, what to do with the algae once it’s extracted? For that, he turned to a company called Bloom, which has been turning algae into biofoam for use in products like shoes and surf board mats.

For Ryan Hunt, Bloom’s Chief Technology Officer, this is the culmination of years of research.

“I co-founded Algix, which is the parent company of Bloom, in 2010. And that was spun off out of research I was doing at the University of Georgia,” Hunt said. “And so, our goal was using algae to treat wastewater and absorb nitrates and phosphates from the water and Co2 from the air –or Co2 dissolved from the water – and convert those pollutants, those nutrients into something of value.”

It was something of an accident, Hunt says, that he discovered algae is well suited to be converted to biofoam.

“Before I started doing this, I was actually making small, little samples that were 100 percent blue-green algae, like spirulina, and was compressing them, applying heat, and making little compressed bars. And those bars essentially exhibited some thermoplastic-like qualities,” Hunt said.

Levy says that conversion process has additional environmental advantages.

“Foam product in the footwear industry – they use a lot of petrochemicals. So every time, and everybody that wears sneakers that have a foam product- that is made with petrochemicals,” Levy said. “So part of our plan and part of our vision is to say- lets reduce the petrochemicals. And we’ve found — and Bloom really has pioneered that — the ability to reduce the amount of petrochemicals in foam, by substituting it with algae.”

And the resulting biofoam doesn’t have the toxic properties that some algae species carry, according to Hunt.

“Detectable levels of microcystin are far below even the Oregon limit for eating algae,” Hunt said. “So theoretically, if you wanted to you could actually eat the shoe and still be in compliance with the Oregon law, but I don’t recommend doing that.”

A spokesman for Lee County says it is currently “working on the best way to quantify” the project’s results. Because algae mitigation efforts in Lee County are being expedited due to severity, the algae harvested from those waterways will not be given to Bloom to convert to biofoam. But, the companies plan to work together on future projects.

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you
https://www.paypal.me/ahamidian

Red Tide Bloom Reaches Southern Pinellas Co. By Trevor Pettiford

1.jpg

Florida Fish and Wildlife said Wednesday that two samples collected showed background-to-low concentrations of the red tide organism.

While the low level of algae is not currently affecting anglers in the area, they are still worried of the possibilities.

“Just being around the water all my life, I’ve seen red tide in here before, but from what I’ve seen, this is a lot worse than it normally is,” said fisherman Amos Phillips.

When Phillips isn’t fishing he is working at the bait shop at the end of the Skyway fishing pier.

Phillips says that fewer people have been out lately, since the red tide threat, and he fears things will get worse.

“Not only is it gonna be in here, but my main concern is how long it’s gonna be here. I mean it could be here a year. And even if it does go out, it’s gonna take a long time for the fish to replenish,” said Phillips. “And my main concern is how long it’s gonna to take recover from this.”

Florida Fish and Wildlife is continuing to collect samples from the coast, with results available here.

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you
https://www.paypal.me/ahamidian

Climate Change & The Giant Iceberg Off Greenland’s Shore – Carolyn Kormann

1.jpg

For a week, an iceberg as colossal as it is fragile held everyone in suspense. It arrived like a gargantuan beast that you hope won’t notice you, at the fishing village of Innaarsuit, Greenland, about five hundred miles north of the Arctic Circle. The iceberg posed a mortal threat to the village population of about a hundred and seventy people.

Standing three hundred feet tall (the height of the Statue of Liberty) and weighing an estimated ten million metric tons (equal to thirty Empire State buildings), it’s riven with cracks and holes. If a big enough part of it sloughed off, in a process known as “calving,” it would cause a tsunami, immediately destroying the little settlement on whose shore it rested.

“You don’t want to be anywhere near the water when it’s happening,” a glaciologist who does research in Greenland said. “It’s just incredibly violent.” People began to evacuate.

Innaarsuit residents are a hardy bunch, living in the sort of climatic extremes that temperate zoners might call otherwordly. For much of the summer, the sun is always up. This year, it won’t set again until in early August. The temperature on Friday was thirty-nine degrees Fahrenheit—about as warm as it ever gets—and in the darkness of February and March, the average remains below zero.

There are no trees. People hunt narwhals (polar unicorns), whales, and seals. The single road dead-ends at a cemetery. Boat captains (the only people who can get you off the island, apart from helicopter pilots) are constantly navigating an endless parade of baby icebergs, set loose from their mothers, drifting with the current past the village, often close enough to touch. They tend to be the size of a beach ball, a dinghy, a shack.

The most recent visitor is different, obviously. “This iceberg is the biggest we have seen,” a village council member named Susanne K. Eliassen said. Karl Petersen, the village council chair, called on the press, asking the world for assistance if the berg were to calve. For the crowd watching online, it was like “Jaws.” We hoped desperately that the great white thing would just continue on its way.

Big icebergs are nothing new, but they usually remain far offshore. Ocean currents and wind push the icebergs along, sometimes five or more miles a day. In this case, the berg got stuck in the shallow waters of the bay. Eric Rignot, a glaciologist from the University of California, Irvine, said that it probably originated from one of the nearby glaciers that flow down the fjords along Greenland’s west coast.

Those glaciers have long been notable for pushing a lot of icebergs out into the sea. But nowadays they are in retreat—more ice is more rapidly breaking from the glacier’s face than snow is accumulating on its back. With climate change, what happened in Innaarsuit, Rignot said, is expected to occur more frequently. Joshua Willis, a glaciologist from NASA’s Jet Propulsion Lab, put it in simple terms:

“As things continue to warm up, more ice is gonna come off and float around.” Drought-stricken South Africa wants to tow one such berg to Cape Town, to prevent the country’s taps from running dry.

Drought and torrid heat waves are scorching Europe, too. In England, the land is so dry that archaeologists are discovering new ruins (they hold underground moisture differently than undisturbed land, changing the way crops grow). In Ireland, a five-thousand-year-old henge came into view. Mostly, however, the news is bad.

Sweden is burning as far north as the Arctic Circle, causing evacuations; last week, it was Norway. Wildfires have even broke out in Northwest England, near Manchester. Great clouds of smoke, visible from space—from wildfires in Siberia (there was an unusually bad wave in May) and in the far north of North America, in boreal and subalpine forests and even out on the tundra—blow over Greenland and stay for a while.

The soot and ash blacken the island’s ice sheet and hasten its melting, leading to more tragedy. Last summer, there was a tsunami in a village near Innaarsuit, called Nuugaatsiaq. Thawing permafrost provoked a landslide so massive that it caused a three-hundred-foot wave, one of the largest ever recorded on camera. Four people died, eleven buildings were washed away, and dozens were injured. For the people of Innaarsuit, the danger posed by their stranded iceberg was reinforced by the recent memory of that disaster.

Coincidentally, or not, a few days before the iceberg showed up in Innaarsuit, on July 9th, Denise Holland, a glaciologist from New York University, released a video of what is almost certainly the largest glacial calving event ever recorded on camera. Holland and her husband, David, a scientist who works with her at N.Y.U., and who also studies ice at the poles, were camping at the Helheim glacier, on Greenland’s east coast, in fiberglass igloos they built themselves.

By chance, after twenty years of returning to the same spot to collect data, their camera happened to be on and filming when the calving event began. It lasted thirty minutes. All together, the ice that fell was as big as half of Manhattan, and weighed roughly ten gigatons, making it a thousand times larger than Innaarsuit’s iceberg. “I was speechless, you can’t believe you are seeing something like that,” David told me.

“There are very few photographs or videos of this actually happening,” Willis, from NASA, said. (Holland does research with him at NASA, too.) “They are happening a lot, but they are hard to catch. This only lasted thirty minutes. It’s weeks or months before something like that would happen again.” Although that glacier is located about sixteen hundred miles from Innaarsuit, Holland said it is a typical case of how the village’s berg was born.

It’s also an invaluable document for studying how ice sheets fall apart, to project future sea-level rise. “Ice is a material that we don’t fully understand,” Holland said. Greenland, a field site much easier and cheaper to get to, also acts as a proxy for studying the West Antarctic Ice Sheet—the most vulnerable of Earth’s three major ice sheets, and the biggest polar threat to civilization.

Many scientists believe that the WAIS has started to retreat irretrievably, but no one has a clear picture of how or how quickly it will break apart. One possible theory is that calving could go into overdrive, and the ice sheet’s dissolution could happen catastrophically fast. The evidence is piling up. A Nature study published in June found that, roughly ten thousand years ago, West Antarctica retreated a hundred and thirty-five thousand square miles, when the planet was significantly cooler than it is today.

In another study, published in the previous issue of Nature, researchers found that, from 1992 until 2017, Antarctica had lost three billion tons of ice, and that the annual rate of loss due to melting from the WAIS increased from fifty-three billion tons to a hundred and fifty-nine billion tons. On July 12, 2017, an ice shelf (akin to a dam that slows a glacier’s flow into the ocean) named Larsen C collapsed, launching an iceberg the size of Delaware (ten times as big as the one that the Hollands recorded in Greenland) into the Weddell Sea.

As the ice shelves that border West Antarctica crumble, the glaciers behind them hasten their retreat. The quantity of ice is unfathomably greater than what Greenland holds, capable of raising global sea level by roughly ten feet, and, Willis said, “it’s kind of poised on a precipice.”

Back in Innaarsuit, the great white iceberg remained mostly intact and, with some help from a new-moon tide and benevolent winds, continued drifting north. By Wednesday, everybody felt safe enough to go home. The store opened, the fishermen got back in their boats and resumed catching green halibut. It’s nice when a story about an iceberg has a happy ending, at least for now.

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

https://www.paypal.me/ahamidian

Covert GEO Targeter – Geo Targeting Compels Your Visitors To Read Your Blog, Click Your Ads & Links

Geo targeting compels your visitors to read your blog,your ads and links. When a visitor comes to your blog and sees for example their own City in your titles, posts, ads etc. It makes you stand out from the crowd and they are much more likely to pay attention to what you have to say.You also instantly become much more relevant to them and they will tend to trust you more. In their eyes it looks like you built a blog specifically for people in their area – you could be the nice guy living next door.To test that, we started using geo targeting on a ton of our blog…..

Read more: http://covertgeotargeter.com/v2/index.html?aid=1

%d bloggers like this:
Skip to toolbar