Effects of Inadequate Sleep and Poor Sleep Quality In Athletes


Athletes are always looking for ways to improve performance and take goals to the next level. Efforts for doing just that are often limited to waking hours: nutrition, hydration, recovery protocols, supplement routine and, of course, training itself. And despite all this, research shows that, on average, athletes neglect a critical performance tool: sleep. So how does inadequate sleep affect athletic performance? Interestingly, the oversight of sleep can impact performance, both directly and indirectly, and the effects largely differ by sport. 

The impact of sleep quality on overall health

Before moving into the impact of sleep on performance, it is important to understand how sleep affects overall health and wellness. Both the amount and quality of sleep impacts our mood and energy levels, our metabolism, and immune system health. Inadequate quality sleep can be linked to a variety of serious health problems, including an increased risk of depression, obesity, type II diabetes, and cardiovascular disease. It can even increase an individual’s risk for illness and infection.

Athletes as a population do not get adequate sleep, contributing to overtraining syndrome

Adequate rest and recovery are considered key components of improving athletic performance and preventing sleep disturbances commonly reported in overtraining syndrome. Sleep provides the body with an opportunity to rest from both the physiological and cognitive stressors many athletes face throughout the day. However, despite the body of evidence on the benefits of sleep in athletes (and the potential for sleep to alleviate fatigue), sleep duration and quality are often neglected by athletes.

It is well-reported that, on average, athletes do in fact get less than seven hours of sleep per night, often of poor quality. This falls below the recommended eight hours to combat the negative effects of sleep deprivation. Despite some research limitations, the British Journal of Sports Medicine consensus statement on the topic states that sleep deprivation does affect recovery, training, and performance in elite athletes and that these athletes as a population do not get enough sleep.

Athletes are, in general, a highly motivated group—the type of people who may willingly restrict sleep to fit more activities into waking hours. But even if you’re someone who ‘gets by just fine’ on a restricted sleep schedule, such a lifestyle can have immediate detrimental effects; evidence shows that restricting sleep to six hours per night for just four consecutive nights can impair cognitive performance and mood, glucose metabolism, appetite regulation, and immune function.

Effects of sleep deprivation on different types of athletes

Before we jump into the research of the effects of sleep deprivation in athletes, a disclaimer: Despite the recognized importance of sleep in athletes’ routines, the research on sleep in athletic populations is sparse at this time. The available research on this topic has specific limitations, including the underrepresentation of female subjects, inconsistent research methods across studies, and small sample size.

Now, the science. Current research does show a number of potential performance implications of poor sleep that should be considered in both endurance and power sport athletes. Among the subjects that have been studied, individual sport athletes appear to be more susceptible sleep deficiency and had poorer sleep efficiency than their team sport counterparts.

Two main detrimental effects of sleep deprivation on performance in all sport types are cognitive impairments and mood disturbances. Blumert et al. looked at the effects of just 24 hours of sleep deprivation in collegiate weightlifters (so, for a single night’s sleep). While they saw no difference in performance tasks, training load or intensity, there was a significant difference in mood state including fatigue and confusion in the sleep deprived athletes.

There are also observed direct effects of sleep deprivation on physical performance. Oliver et al. studied endurance running performance in a 24 hour sleep deprived state and found that that subjects who were sleep deprived ran fewer miles in the same amount of time as well-rested athletes but with the same perception of effort.[8] Athletes should also be mindful of the non-direct consequences of sleep deprivation on their performance including but not limited to metabolism, hormone regulation, immune health, and limiting recovery.

Much like everything related to health, wellness, and performance, each individual will have different sleep requirements. These requirements may also vary depending on phase or training season, sex, training volume, intensity, and type of sport.

Biomarkers related to sleep and performance in athletes

Adequate sleep helps to regulate cortisol levels, and inadequate sleep can cause cortisol levels to rise above optimized levels. Cortisol is a catabolic steroid hormone that breaks down muscle, so chronically-elevated cortisol can directly combat progress to become stronger or faster in our athletic performance. 

Sleep also helps to regulate testosterone levels. This hormone is anabolic, meaning it helps build muscle (the opposite of cortisol). But, as you might have guessed, insufficient sleep can reduce testosterone levels.

Research shows that sleep deprivation can also cause chronic inflammation, as indicated by high hsCRP levels. As athletes, inflammation and muscle damage are to be expected with any sort of training—after all, we need to cause slight damage to our muscles to make them stronger. But chronic inflammation, the kind that’s caused by overtraining or insufficient rest, can leave an athlete prone to poor performance, illness, and injury. 

Actions for athletes to take to improve sleep

While the benefits of adequate sleep are well-documented in healthy individuals, the research specific to athletes and different athlete types continues to emerge. That being said, there are well-established actions you can take right now to improve your sleep. Here are some actions to optimize your sleep habits:

. If you have trouble getting the recommended amount of sleep at night, consider taking regular naps.

. Begin tracking your sleep with a wearable activity tracker. While research has displayed varying accuracy of these devices for sleep management, they can help you establish a healthy and regular bedtime routine.

. Work on implementing good sleep habits or a bedtime routine that reduces stress and promotes a good sleeping environment.

. Consider adjusting your exercise routine and incorporate more rest and active recovery in times of sleep deprivation or high life stress to help support your overall health and prevent injury or illness.



Source: Effects of inadequate Sleep and Poor sleep Quality in Athletes.



Related Contents:

. “The effects of REM sleep deprivation on the level of sleepiness/alertness”. Sleep. 21 (6): 609–614. doi:10.1093/sleep/21.6.609. PMID9779520. Riemann D, Berger M, Voderholzer U (July–August 2001). “Sleep and depression – results from psychobiological studies: an overview”. Biological Psychology. 57 (1–3): 67–103. doi:10.1016/s0301-0511(01)00090-4. PMID11454435. S2CID31725861. Kushida (2005). Sleep deprivation. Informa Health Care. pp. 1–2. ISBN978-0-8247-5949-0. Rechtschaffen A, Bergmann B (1995). “Sleep deprivation in the rat by the disk-over-water method”. Behavioural Brain Research. 69 (1–2): 55–63. doi:10.1016/0166-4328(95)00020-T. PMID7546318. S2CID4042505. Morphy, Hannah; Dunn, Kate M.; Lewis, Martyn; Boardman, Helen F.; Croft, Peter R. (2007). “Epidemiology of Insomnia: a Longitudinal Study in a UK :<|”:<“. Sleep. 30 (3): 274–80. PMID17425223. Archived from the original on 22 December 2015. Retrieved 13 December 2015. Kim, K; Uchiyama, M; Okawa, M; Liu, X; Ogihara, R (1 February 2000). “An epidemiological study of insomnia among the Japanese general population”. Sleep. 23 (1): 41–7. doi:10.1093/sleep/23.1.1a. PMID10678464. “Dyssomnias” (PDF). WHO. pp. 7–11. Archived (PDF) from the original on 18 March 2009. Retrieved 25 January 2009. Buysse, Daniel J. (2008). “Chronic Insomnia”. Am. J. Psychiatry. 165 (6): 678–86. doi:10.1176/appi.ajp.2008.08010129. PMC2859710. PMID18519533. For this reason, the NIH conference [of 2005] commended the term “comorbid insomnia” as a preferable alternative to the term “secondary insomnia.” Erman, Milton K. (2007). “Insomnia: Comorbidities and Consequences”. Primary Psychiatry. 14 (6): 31–35. Archived from the original on 15 July 2011. Two general categories of insomnia exist, primary insomnia and comorbid insomnia. World Health Organization (2007). “Quantifying burden of disease from environmental noise” (PDF). p. 20. Archived (PDF) from the original on 23 November 2010. Retrieved 22 September 2010. Chunhua L, Hongzhong Q (15 June 2017). “Paradoxical Insomnia: Misperception of Sleep Can Be a Tormenting Experience”. American Family Physician. 95 (12): 770. PMID28671423. Retrieved 10 May 2020. Biological Rhythms, Sleep and Hypnosis by Simon Green Plaford, Gary R. (2009). Sleep and learning : the magic that makes us healthy and smart. Lanham. ISBN9781607090915. OCLC310224798. Zammit, Gary K. (1997). Good nights : how to stop sleep deprivation, overcome insomnia, and get the sleep you need. Zanca, Jane A. Kansas City: Andrews and McMeel. ISBN0-8362-2188-5. OCLC35849087. Spicuzza L, Caruso D, Di Maria G. Obstructive sleep apnoea syndrome and its management. Therapeutic Advances in Chronic Disease. 2015;6(5):273-285. doi:10.1177/2040622315590318. Muza RT (2015). “Central sleep apnoea—a clinical review”. Journal of Thoracic Disease. 7 (5): 930–937. doi:10.3978/j.issn.2072-1439.2015.04.45. PMC4454847. PMID26101651. McKenna BS, Eyler LT (November 2012). “Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: a review of functional neuroimaging studies”. Clin Psychol Rev. 32 (7): 650–663. doi:10.1016/j.cpr.2012.07.003. PMC3922056. PMID22926687. Young, JW; Dulcis, D (15 July 2015). “Investigating the mechanism(s) underlying switching between states in bipolar disorder”. European Journal of Pharmacology. 759: 151–62. doi:10.1016/j.ejphar.2015.03.019. PMC4437855. PMID25814263. Wehr, TA (1987). “Sleep reduction as a final common pathway in the genesis of mania”. Am. J. Psychiatry. 144 (2): 201–204. doi:10.1176/ajp.144.2.201. PMID3812788. American Psychiatry Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington: American Psychiatric Publishing. pp. 123–154. ISBN978-0-89042-555-8. Pocivavsek, A; Rowland, LM (13 January 2018). “Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia”. Schizophrenia Bulletin. 44 (1): 7–14. doi:10.1093/schbul/sbx151. PMC5768044. PMID29136236. “National Sleep Foundation Key Messages/Talking Points” (PDF). Archived (PDF) from the original on 18 April 2016. Retrieved 18 April 2016. Schroeder, Jackson (7 December 2018). “Students Who Sleep 8 Hours Score Higher On Final Exams”. The University Network. Retrieved 10 December 2018. Shelley D Hershner; Ronald D Chervin (23 June 2014). “Causes and consequences of sleepiness among college students”. Nature and Science of Sleep. 6: 73–84. doi:10.2147/NSS.S62907. PMC4075951. PMID25018659. Tsai LL, Li SP; Li (2004). “Sleep patterns in college students; Gender and grade differences”. J. Psychosom. Res. 56 (2): 231–7. doi:10.1016/S0022-3999(03)00507-5. PMID15016583. Archived from the original on 20 December 2008. Kelley, Paul; Lockley, Steven; Foster, Russel; Kelley, Jonathan (1 August 2014). “Synchronizing education to adolescent biology: ‘let teens sleep, start school later'”. Learning, Media and Technology. 40 (2): 220. doi:10.1080/17439884.2014.942666. Kelley, Paul; Lockley, Steven W.; Foster, Russell G.; Kelley, Jonathan (1 August 2014). “Synchronizing education to adolescent biology: ‘let teens sleep, start school later'”. Learning, Media and Technology. Informa UK Limited. 40 (2): 210–226. doi:10.1080/17439884.2014.942666. ISSN1743-9884. Carpenter, Siri (2001). “Sleep deprivation may be undermining teen health”. Monitor on Psychology. 32 (9): 42. Archived from the original on 6 October 2006. Randolph E. Schmid (28 March 2006). “Sleep-deprived teens dozing off at school”. ABC News. Associated Press. Archived from the original on 8 December 2006. Giedd JN (October 2009). “Linking adolescent sleep, brain maturation, and behavior”. Journal of Adolescent Health. 45 (4): 319–320. doi:10.1016/j.jadohealth.2009.07.007. PMC3018343. PMID19766933. Wesselius, Hilde M.; van den Ende, Eva S.; Alsma, Jelmer; ter Maaten, Jan C.; Schuit, Stephanie C. E.; Stassen, Patricia M.; de Vries, Oscar J.; Kaasjager, Karin H. A. H.; Haak, Harm R.; van Doormaal, Frederiek F.; Hoogerwerf, Jacobien J. (1 September 2018). “Quality and Quantity of Sleep and Factors Associated With Sleep Disturbance in Hospitalized Patients”. JAMA Internal Medicine. 178 (9): 1201–1208. doi:10.1001/jamainternmed.2018.2669. ISSN2168-6106. PMC6142965. PMID30014139. Shilo, L.; Dagan, Y.; Smorjik, Y.; Weinberg, U.; Dolev, S.; Komptel, B.; Balaum, H.; Shenkman, L. (May 1999). “Patients in the Intensive Care Unit Suffer from Severe Lack of Sleep Associated with Loss of Normal Melatonin Secretion Pattern”. The American Journal of the Medical Sciences. 317 (5): 278–281. doi:10.1016/s0002-9629(15)40528-2. ISSN0002-9629. PMID10334113. Tan, Xiao; van Egmond, Lieve; Partinen, Markku; Lange, Tanja; Benedict, Christian (1 July 2019). “A narrative review of interventions for improving sleep and reducing circadian disruption in medical inpatients”. Sleep Medicine. 59: 42–50. doi:10.1016/j.sleep.2018.08.007. ISSN1389-9457. PMID30415906. “Broadband internet causes sleep deprivation, a new study finds”. ScienceDaily. Retrieved 10 August 2018. Alshobaili, Fahdah; AlYousefi, Nada (26 June 2019). “The effect of smartphone usage at bedtime on sleep quality among Saudi non- medical staff at King Saud University Medical City”. J Family Med Prim Care. 8 (6): 1953–1957. doi:10.4103/jfmpc.jfmpc_269_19. PMC6618184. PMID31334161. Retrieved 18 August 2021. Yoo, Seung-Schik; Gujar, Ninad; Hu, Peter; Jolesz, Ferenc; Walker, Matthew (2007). “The human emotional brain without sleep- a prefrontal amygdala disconnect”. Current Biology. 17 (20): R877–R878. doi:10.1016/j.cub.2007.08.007. PMID17956744. S2CID9008816. Thomas, M., Sing, H., Belenky, G., Holcomb, H., Mayberg, H., Dannals, R., Wagner JR., H., Thorne, D., Popp, K., Rowland, L., Welsh, A., Balwinski, S. and Redmond, D. (2000). “Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity”. Journal of Sleep Research. 9 (4): 335–52. doi:10.1046/j.1365-2869.2000.00225.x. PMID11123521. S2CID35893889. Farahani, Farzad V.; Fafrowicz, Magdalena; Karwowski, Waldemar; Douglas, Pamela K.; Domagalik, Aleksandra; Beldzik, Ewa; Oginska, Halszka; Marek, Tadeusz (11 October 2019). “Effects of Chronic Sleep Restriction on the Brain Functional Network, as Revealed by Graph Theory”. Frontiers in Neuroscience. Frontiers Media SA. 13. doi:10.3389/fnins.2019.01087. ISSN1662-453X. Siegel, Jerome M. (November 2003). “Why We Sleep” (PDF). Scientific American. Archived (PDF) from the original on 3 December 2008. Retrieved 3 April 2008. No sleep means no new brain cellsArchived 11 February 2007 at the Wayback Machine. BBC (10 February 2007) Kolb, Bryan; Whishaw, Ian (2014). An Introduction to Brain and Behavior (4th ed.). New York, New York: Worth Publishers. pp. 468–469. ISBN9781429242288. Innes, Carrie R. H.; Poudel, Govinda R.; Jones, Richard D. (1 November 2013). “Efficient and Regular Patterns of Nighttime Sleep are Related to Increased Vulnerability to Microsleeps Following a Single Night of Sleep Restriction”. Chronobiology International. 30 (9): 1187–1196. doi:10.3109/07420528.2013.810222. ISSN0742-0528. PMID23998288. S2CID4682794. Van Dongen HA (2002). “The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation” (PDF). Sleep. 26 (2): 117–26. doi:10.1093/sleep/26.2.117. PMID12683469. Archived (PDF) from the original on 18 July 2011. “Sleep and Mood | Need Sleep”. healthysleep.med.harvard.edu. Retrieved 21 January 2021. Dinges, DF; Pack, F; Williams, K; Gillen, KA; Powell, JW; Ott, GE; Aptowicz, C; Pack, AI (1997). “Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night”. Sleep. 20 (4): 267–77. ISSN0161-8105. PMID9231952. “Depression and Sleep”. Sleep Foundation. Retrieved 21 January 2021. Franzen, Peter L.; Buysse, Daniel J. (2008). “Sleep disturbances and depression: risk relationships for subsequent depression and therapeutic implications”. Dialogues in Clinical Neuroscience. 10 (4): 473–481. doi:10.31887/DCNS.2008.10.4/plfranzen. ISSN1294-8322. PMC3108260. PMID19170404. Nutt, David; Wilson, Sue; Paterson, Louise (2008). “Sleep disorders as core symptoms of depression”. Dialogues in Clinical Neuroscience. 10 (3): 329–336. doi:10.31887/DCNS.2008.10.3/dnutt. ISSN1294-8322. PMC3181883. PMID18979946. Pires, Gabriel Natan; Bezerra, Andreia Gomes; Tufik, Sergio; Andersen, Monica Levy (August 2016). “Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis”. Sleep Medicine. 24: 109–118. doi:10.1016/j.sleep.2016.07.019. ISSN1878-5506. PMID27810176. Selvi, Yavuz; Mustafa Gulec; Mehmet Yucel Agargun; Lutfullah Besiroglu (2007). “Mood changes after sleep deprivation in morningness–eveningness chronotypes in healthy individuals” (PDF). Journal of Sleep Research. 16 (3): 241–4. doi:10.1111/j.1365-2869.2007.00596.x. PMID17716271. S2CID42338269. Archived (PDF) from the original on 15 December 2014. “Drowsy Driving Fact Sheet” (PDF). American Academy of Sleep Medicine. 2 December 2009. Archived (PDF) from the original on 18 July 2011. Williamson AM, Feyer AM (2000). “Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication”. Occup. Environ. Med. 57 (10): 649–55. doi:10.1136/oem.57.10.649. PMC1739867. PMID10984335. Dawson, Drew; Kathryn Reid (1997). “Fatigue, alcohol and performance impairment”. Nature. 388 (6639): 235. Bibcode:1997Natur.388..235D. doi:10.1038/40775. PMID9230429. S2CID4424846. ProQuest2092623770 Schulz, H., Bes, E., Jobert, M. (1997). Modelling Sleep Propensity and Sleep Disturbances. In: Meier-Ewert K., Okawa M. (eds) Sleep—Wake Disorders. Springer. doi:10.1007/978-1-4899-0245-0_2 Durmer JS, Dinges DF (2005). “Neurocognitive Consequences of Sleep Deprivation”. Semin Neurol. 25 (1): 117–129. doi:10.1055/s-2005-867080. PMC3564638. PMID15798944. Saper CB, Chou TC, Scammell TE (2001). “The sleep switch: hypothalamic control of sleep and wakefulness”. Trends Neurosci. 24 (12): 726–731. doi:10.1016/S0166-2236(00)02002-6. PMID11718878. S2CID206027570. Borbély AA, Daan S, Wirz-Justice A (2016). “The two‐process model of sleep regulation: a reappraisal”. Journal of Sleep Research. 25 (2): 131–143. doi:10.1111/jsr.12371. PMID26762182. “Glossary K-M”. Get Sleep. Harvard Medical School. 2012. Archived from the original on 2 April 2015. “Microsleep | Microsleeps”. http://www.sleepdex.org. Archived from the original on 3 March 2016. Retrieved 14 February 2016. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011). “Local sleep in awake rats”. Nature. 472 (7344): 443–447. Bibcode:2011Natur.472..443V. doi:10.1038/nature10009. PMC3085007. PMID21525926. “CDC – Sleep and Chronic Disease – Sleep and Sleep Disorders”. http://www.cdc.gov. 13 February 2019. Retrieved 21 January 2021. Knutson, Kristen L.; Van Cauter, Eve; Rathouz, Paul J.; Yan, Lijing L.; Hulley, Stephen B.; Liu, Kiang; Lauderdale, Diane S. (8 June 2009). “Association between sleep and blood pressure in midlife: the CARDIA sleep study”. Archives of Internal Medicine. 169 (11): 1055–1061. doi:10.1001/archinternmed.2009.119. ISSN1538-3679. PMC2944774. PMID19506175. King, Christopher Ryan; Knutson, Kristen L.; Rathouz, Paul J.; Sidney, Steve; Liu, Kiang; Lauderdale, Diane S. (24 December 2008). “Short sleep duration and incident coronary artery calcification”. JAMA. 300 (24): 2859–2866. doi:10.1001/jama.2008.867. ISSN1538-3598. PMC2661105. PMID19109114. Sabanayagam, Charumathi; Shankar, Anoop (August 2010). “Sleep duration and cardiovascular disease: results from the National Health Interview Survey”. Sleep. 33 (8): 1037–1042. doi:10.1093/sleep/33.8.1037. ISSN0161-8105. PMC2910533. PMID20815184. St-Onge, Marie-Pierre; Grandner, Michael A.; Brown, Devin; Conroy, Molly B.; Jean-Louis, Girardin; Coons, Michael; Bhatt, Deepak L. (1 November 2016). “Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement From the American Heart Association”. Circulation. 134 (18): e367–e386. doi:10.1161/CIR.0000000000000444. ISSN1524-4539. PMC5567876. PMID27647451. “CDC – Data and Statistics – Sleep and Sleep Disorders”. http://www.cdc.gov. 5 March 2019. Retrieved 21 January 2021. Deng, Han-Bing; Tam, Tony; Zee, Benny Chung-Ying; Chung, Roger Yat-Nork; Su, Xuefen; Jin, Lei; Chan, Ta-Chien; Chang, Ly-Yun; Yeoh, Eng-Kiong; Lao, Xiang Qian (1 October 2017). “Short Sleep Duration Increases Metabolic Impact in Healthy Adults: A Population-Based Cohort Study”. Sleep. 40 (10). doi:10.1093/sleep/zsx130. ISSN1550-9109. PMID28977563. Daghlas, Iyas; Dashti, Hassan S.; Lane, Jacqueline; Aragam, Krishna G.; Rutter, Martin K.; Saxena, Richa; Vetter, Céline (10 September 2019). “Sleep Duration and Myocardial Infarction”. Journal of the American College of Cardiology. 74 (10): 1304–1314. doi:10.1016/j.jacc.2019.07.022. ISSN1558-3597. PMC6785011. PMID31488267. “Sleep & Immunity: Can a Lack of Sleep Make You Sick?”. Sleep Foundation. Retrieved 21 January 2021. Irwin, Michael R. (November 2019). “Sleep and inflammation: partners in sickness and in health”. Nature Reviews. Immunology. 19 (11): 702–715. doi:10.1038/s41577-019-0190-z. ISSN1474-1741. PMID31289370. S2CID195847558. Prather, Aric A.; Janicki-Deverts, Denise; Hall, Martica H.; Cohen, Sheldon (1 September 2015). “Behaviorally Assessed Sleep and Susceptibility to the Common Cold”. Sleep. 38 (9): 1353–1359. doi:10.5665/sleep.4968. ISSN1550-9109. PMC4531403. PMID26118561. Pisani, Margaret A.; Friese, Randall S.; Gehlbach, Brian K.; Schwab, Richard J.; Weinhouse, Gerald L.; Jones, Shirley F. (1 April 2015). “Sleep in the intensive care unit”. American Journal of Respiratory and Critical Care Medicine. 191 (7): 731–738. doi:10.1164/rccm.201411-2099CI. ISSN1535-4970. PMC5447310. PMID25594808. Van Cauter E, Spiegel K (1999). “Sleep as a mediator of the relationship between socioeconomic status and health: a hypothesis”. Ann. N. Y. Acad. Sci. 896 (1): 254–61. Bibcode:1999NYASA.896..254V. doi:10.1111/j.1749-6632.1999.tb08120.x. PMID10681902. S2CID36513336. Taheri, Shahrad; Lin, Ling; Austin, Diane; Young, Terry; Mignot, Emmanuel (2004). “Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index”. PLOS Medicine. 1 (3): e62. doi:10.1371/journal.pmed.0010062. PMC535701. PMID15602591. Taheri S, Lin L, Austin D, Young T, Mignot E (December 2004). “Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index”. PLOS Med. 1 (3): e62. doi:10.1371/journal.pmed.0010062. PMC535701. PMID15602591. “The Link Between Obesity and Sleep Deprivation”. Sleep Foundation. Retrieved 21 January 2021. Everson CA, Bergmann BM, Rechtschaffen A (February 1989). “Sleep deprivation in the rat: III. Total sleep deprivation”. Sleep. 12 (1): 13–21. doi:10.1093/sleep/12.1.13. PMID2928622. Taheri S, Lin L, Austin D, Young T, Mignot E (December 2004). “Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index”. PLOS Med. 1 (3): e62. doi:10.1371/journal.pmed.0010062. PMC535701. PMID15602591. “Sleep and Disease Risk”. Healthy Sleep. Harvard Medical School. 2007. Archived from the original on 25 March 2016. “Diabetes and Sleep: Sleep Disturbances & Coping”. Sleep Foundation. Retrieved 21 January 2021. Gottlieb DJ, Punjabi NM, Newman AB (April 2005). “Association of sleep time with diabetes mellitus and impaired glucose tolerance”. Arch. Intern. Med. 165 (8): 863–7. doi:10.1001/archinte.165.8.863. PMID15851636. Spiegel, K.; R. Leproult; E. Van Cauter (23 October 1999). “Impact of sleep debt on metabolic and endocrine function”. The Lancet. 354 (9188): 1435–9. doi:10.1016/S0140-6736(99)01376-8. PMID10543671. S2CID3854642. “Drowsy Driving:Key Messages and Talking Points” (PDF). National Sleep Foundation. 2 December 2009. Archived (PDF) from the original on 26 November 2013. “Fact Sheet – Pilot Fatigue”. Federal Aviation Administration. 10 September 2010. Archived from the original on 5 October 2016. Baldwinn, DeWitt C. Jr.; Steven R. Daugherty (2004). “Sleep Deprivation and Fatigue in Residency Training: Results of a National Survey of First- and Second-Year Residents”. Sleep. 27 (2): 217–223. doi:10.1093/sleep/27.2.217. PMID15124713. Engle-Friedman, Mindy; Suzanne Riela; Rama Golan; Ana M. Ventuneac2; Christine M. Davis1; Angela D. Jefferson; Donna Major (June 2003). “The effect of sleep loss on next day effort”. Journal of Sleep Research. 12 (2): 113–124. doi:10.1046/j.1365-2869.2003.00351.x. PMID12753348. S2CID13519528. Engle Friedman, Mindy; Palencar, V; Riela, S (2010). “Sleep and effort in adolescent athletes”. J. Child Health Care. 14 (2): 131–41. doi:10.1177/1367493510362129. PMID20435615. S2CID7680316. Coren, Stanley (1 March 1998). “Sleep Deprivation, Psychosis and Mental Efficiency”. Psychiatric Times. 15 (3). Archived from the original on 4 September 2009. Retrieved 25 November 2009. Whitmire, A.M.; Leveton, L.B; Barger, L.; Brainard, G.; Dinges, D.F.; Klerman, E.; Shea, C. “Risk of Performance Errors due to Sleep Loss, Circadian Desynchronization, Fatigue, and Work Overload” (PDF). Human Health and Performance Risks of Space Exploration Missions: Evidence reviewed by the NASA Human Research Program. Archived (PDF) from the original on 15 February 2012. Retrieved 25 June 2012. Rangaraj VR, Knutson KL (February 2016). “Association between sleep deficiency and cardiometabolic disease: implications for health disparities”. Sleep Med. 18: 19–35. doi:10.1016/j.sleep.2015.02.535. PMC4758899. PMID26431758. “Sleep deprivation”. betterhealth.vic.gov.au. Archived from the original on 20 August 2009. Morin, Charles M. (2003). Insomnia. New York: Kluwer Academic/Plenum Publ. p. 28 death. ISBN978-0-306-47750-8. National Institute of Neurological Disorders and Stroke – Brain Basics: Understanding SleepArchived 11 October 2007 at the Wayback Machine. ninds.nih.gov Ohayon, M.M.; R.G. Priest; M. Caulet; C. Guilleminault (October 1996). “Hypnagogic and hypnopompic hallucinations: pathological phenomena?”. British Journal of Psychiatry. 169 (4): 459–67. doi:10.1192/bjp.169.4.459. PMID8894197. Retrieved 21 October 2006. Smith, Andrew P. (1992). Handbook of Human Performance. London: Acad. Press. p. 240. ISBN978-0-12-650352-4. “Harvard Heart Letter examines the costs of not getting enough sleep – Harvard Health Publications”. Health.harvard.edu. 31 May 2012. Archived from the original on 9 May 2011. Retrieved 13 August 2012.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: