The battery pack of a Tesla Model S is a feat of intricate engineering. Thousands of cylindrical cells with components sourced from around the world transform lithium and electrons into enough energy to propel the car hundreds of kilometers, again and again, without tailpipe emissions. But when the battery comes to the end of its life, its green benefits fade.
If it ends up in a landfill, its cells can release problematic toxins, including heavy metals. And recycling the battery can be a hazardous business, warns materials scientist Dana Thompson of the University of Leicester. Cut too deep into a Tesla cell, or in the wrong place, and it can short-circuit, combust, and release toxic fume.
That’s just one of the many problems confronting researchers, including Thompson, who are trying to tackle an emerging problem: how to recycle the millions of electric vehicle (EV) batteries that manufacturers expect to produce over the next few decades. Current EV batteries “are really not designed to be recycled,” says Thompson, a research fellow at the Faraday Institution, a research center focused on battery issues in the United Kingdom.
That wasn’t much of a problem when EVs were rare. But now the technology is taking off. Several carmakers have said they plan to phase out combustion engines within a few decades, and industry analysts predict at least 145 million EVs will be on the road by 2030, up from just 11 million last year. “People are starting to realize this is an issue,” Thompson says.
Governments are inching toward requiring some level of recycling. In 2018, China imposed new rules aimed at promoting the reuse of EV battery components. The European Union is expected to finalize its first requirements this year. In the United States, the federal government has yet to advance recycling mandates, but several states, including California—the nation’s largest car market—are exploring setting their own rules.
Complying won’t be easy. Batteries differ widely in chemistry and construction, which makes it difficult to create efficient recycling systems. And the cells are often held together with tough glues that make them difficult to take apart. That has contributed to an economic obstacle: It’s often cheaper for batterymakers to buy freshly mined metals than to use recycled materials.
Better recycling methods would not only prevent pollution, researchers note, but also help governments boost their economic and national security by increasing supplies of key battery metals that are controlled by one or a few nations. “On the one side, [disposing of EV batteries] is a waste management problem. And on the other side, it’s an opportunity for producing a sustainable secondary stream of critical materials,” says Gavin Harper, a University of Birmingham researcher who studies EV policy issues.
To jump-start recycling, governments and industry are putting money into an array of research initiatives. The U.S. Department of Energy (DOE) has pumped some $15 million into a ReCell Center to coordinate studies by scientists in academia, industry, and at government laboratories. The United Kingdom has backed the ReLiB project, a multi-institution effort. As the EV industry ramps up, the need for progress is becoming urgent, says Linda Gaines, who works on battery recycling at DOE’s Argonne National Laboratory. “The sooner we can get everything moving,” she says, “the better.
Now, recyclers primarily target metals in the cathode, such as cobalt and nickel, that fetch high prices. (Lithium and graphite are too cheap for recycling to be economical.) But because of the small quantities, the metals are like needles in a haystack: hard to find and recover.
To extract those needles, recyclers rely on two techniques, known as pyrometallurgy and hydrometallurgy. The more common is pyrometallurgy, in which recyclers first mechanically shred the cell and then burn it, leaving a charred mass of plastic, metals, and glues. At that point, they can use several methods to extract the metals, including further burning. “Pyromet is essentially treating the battery as if it were an ore” straight from a mine, Gaines says. Hydrometallurgy, in contrast, involves dunking battery materials in pools of acid, producing a metal-laden soup. Sometimes the two methods are combined.
Each has advantages and downsides. Pyrometallurgy, for example, doesn’t require the recycler to know the battery’s design or composition, or even whether it is completely discharged, in order to move ahead safely. But it is energy intensive. Hydrometallurgy can extract materials not easily obtained through burning, but it can involve chemicals that pose health risks.
And recovering the desired elements from the chemical soup can be difficult, although researchers are experimenting with compounds that promise to dissolve certain battery metals but leave others in a solid form, making them easier to recover. For example, Thompson has identified one candidate, a mixture of acids and bases called a deep eutectic solvent, that dissolves everything but nickel.
Both processes produce extensive waste and emit greenhouse gases, studies have found. And the business model can be shaky: Most operations depend on selling recovered cobalt to stay in business, but batterymakers are trying to shift away from that relatively expensive metal. If that happens, recyclers could be left trying to sell piles of “dirt,” says materials scientist Rebecca Ciez of Purdue University.
The ideal is direct recycling, which would keep the cathode mixture intact. That’s attractive to batterymakers because recycled cathodes wouldn’t require heavy processing, Gaines notes (although manufacturers might still have to revitalize cathodes by adding small amounts of lithium). “So if you’re thinking circular economy, [direct recycling] is a smaller circle than pyromet or hydromet.”
In direct recycling, workers would first vacuum away the electrolyte and shred battery cells. Then, they would remove binders with heat or solvents, and use a flotation technique to separate anode and cathode materials. At this point, the cathode material resembles baby powder.
So far, direct recycling experiments have only focused on single cells and yielded just tens of grams of cathode powders. But researchers at the U.S. National Renewable Energy Laboratory have built economic models showing the technique could, if scaled up under the right conditions, be viable in the future.
To realize direct recycling, however, batterymakers, recyclers, and researchers need to sort out a host of issues. One is making sure manufacturers label their batteries, so recyclers know what kind of cell they are dealing with—and whether the cathode metals have any value. Given the rapidly changing battery market, Gaines notes, cathodes manufactured today might not be able to find a future buyer. Recyclers would be “recovering a dinosaur. No one will want the product.”
Another challenge is efficiently cracking open EV batteries. Nissan’s rectangular Leaf battery module can take 2 hours to dismantle. Tesla’s cells are unique not only for their cylindrical shape, but also for the almost indestructible polyurethane cement that holds them together.
Engineers might be able to build robots that could speed battery disassembly, but sticky issues remain even after you get inside the cell, researchers note. That’s because more glues are used to hold the anodes, cathodes, and other components in place. One solvent that recyclers use to dissolve cathode binders is so toxic that the European Union has introduced restrictions on its use, and the U.S. Environmental Protection Agency determined last year that it poses an “unreasonable risk” to workers.“In terms of economics, you’ve got to disassemble … [and] if you want to disassemble, then you’ve got to get rid of glues,” says Andrew Abbott, a chemist at the University of Leicester and Thompson’s adviser.
To ease the process, Thompson and other researchers are urging EV- and batterymakers to start designing their products with recycling in mind. The ideal battery, Abbott says, would be like a Christmas cracker, a U.K. holiday gift that pops open when the recipient pulls at each end, revealing candy or a message. As an example, he points to the Blade Battery, a lithium ferrophosphate battery released last year by BYD, a Chinese EV-maker. Its pack does away with the module component, instead storing flat cells directly inside. The cells can be removed easily by hand, without fighting with wires and glues.
By Ian Morse
Source: Millions of electric cars are coming. What happens to all the dead batteries? | Science | AAAS
.
References
- “Reducing Pollution with Electric Vehicles”. http://www.energy.gov. Archived from the original on 12 May 2018. Retrieved 12 May 2018.
- Preston, Benjamin. “EVs Offer Big Savings Over Traditional Gas-Powered Cars”. Consumer Reports. Retrieved 22 November 2020.
- “How to charge an electric car”. Carbuyer. Archived from the original on 23 April 2018. Retrieved 22 April 2018.
- “Infographic: California Is Among the World’s Largest Car Markets”. Statista Infographics. Retrieved 26 September 2020.
- “Governor Newsom Announces California Will Phase Out Gasoline-Powered Cars & Drastically Reduce Demand for Fossil Fuel in California’s Fight Against Climate Change”. California Governor. 23 September 2020. Retrieved 26 September 2020.
- Groom, David Shepardson, Nichola (29 September 2020). “U.S. EPA chief challenges California effort to mandate zero emission vehicles in 2035”. Reuters. Retrieved 29 September 2020.
- “2021 Tesla Model 3 Long Range AWD”. http://www.fueleconomy.gov. Retrieved 13 November 2020.
- O’Kane, Sean (22 February 2019). “Tesla’s Model 3 was the best-selling EV in the world last year”. The Verge. Archived from the original on 19 October 2019. Retrieved 15 December 2019.
- “2019 Tesla Model 3 Long Range”. http://www.fueleconomy.gov. Archived from the original on 14 April 2020. Retrieved 15 December 2019.
- “Tesla Model 3 Equals 1/8 Of World’s EV Sales In 2019”. CleanTechnica. 6 December 2019. Archived from the original on 8 December 2019. Retrieved 15 December 2019.
- Holland, Maximilian (10 February 2020). “Tesla Passes 1 Million EV Milestone & Model 3 Becomes All Time Best Seller”. CleanTechnica. Archived from the original on 12 April 2020. Retrieved 15 May 2020.
- International Energy Agency (IEA), Clean Energy Ministerial, and Electric Vehicles Initiative (EVI) (June 2020). “Global EV Outlook 2020: Enterign the decade of electric drive?”. IEA Publications. Retrieved 15 June 2020. See Statistical annex, pp. 247–252 (See Tables A.1 and A.12). The global stock of plug-in electric passenger vehicles totaled 7.2 million cars at the end of 2019, of which, 47% were on the road in China. The stock of plug-in cars consist of 4.8 million battery electric cars (66.6%) and 2.4 million plug-in hybrids (33.3%). In addition, the stock of light commercial plug-in electric vehicles in use totaled 378 thousand units in 2019, and about half a million electric buses were in circulation, most of which are in China.
- “Global Electric Vehicle Stock Reaches 7.2 Million”. EV Statistics. 20 June 2020. Retrieved 29 September 2020.
- “Global EV Outlook 2021 – Analysis”. IEA. Retrieved 12 May 2021.
- “US Department of Transportation National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards”. Archived from the original on 27 February 2010. Retrieved 6 August 2009.
- “Citizens’ summary EU proposal for a Regulation on L-category vehicles (two- or three-wheel vehicles and quadricycles)” (PDF).
- “Elwell-Parker, Limited”. Archived from the original on 4 March 2016. Retrieved 17 February 2016.
- Roth, Hans (March 2011). Das erste vierrädrige Elektroauto der Welt [The first four-wheeled electric car in the world] (in German). pp. 2–3.
- Wakefield, Ernest H (1994). History of the Electric Automobile. Society of Automotive Engineers. pp. 2–3. ISBN 1-5609-1299-5.
- Guarnieri, M. (2012). Looking back to electric cars. Proc. HISTELCON 2012 – 3rd Region-8 IEEE HISTory of Electro – Technology Conference: The Origins of Electrotechnologies. pp. 1–6. doi:10.1109/HISTELCON.2012.6487583. ISBN 978-1-4673-3078-7.
- “Electric Car History”. Archived from the original on 5 January 2014. Retrieved 17 December 2012.
- “World’s first electric car built by Victorian inventor in 1884”. The Daily Telegraph. London. 24 April 2009. Archived from the original on 21 April 2018. Retrieved 14 July 2009.
- Boyle, David (2018). 30-Second Great Inventions. Ivy Press. p. 62. ISBN 9781782406846.
- Denton, Tom (2016). Electric and Hybrid Vehicles. Routledge. p. 6. ISBN 9781317552512.
- “Elektroauto in Coburg erfunden” [Electric car invented in Coburg]. Neue Presse Coburg (in German). Germany. 12 January 2011. Archived from the original on 9 March 2016. Retrieved 30 September 2019.
- “Electric automobile”. Encyclopædia Britannica (online). Archived from the original on 20 February 2014. Retrieved 2 May 2014.
- Gerdes, Justin (11 May 2012). “The Global Electric Vehicle Movement: Best Practices From 16 Cities”. Forbes. Archived from the original on 29 July 2017. Retrieved 20 October 2014.
- Says, Alan Brown. “The Surprisingly Old Story of London’s First Ever Electric Taxi”. Science Museum Blog. Archived from the original on 23 October 2019. Retrieved 23 October 2019.
- Handy, Galen (2014). “History of Electric Cars”. The Edison Tech Center. Archived from the original on 18 September 2017. Retrieved 7 September 2017.
- “Some Facts about Electric Vehicles”. Automobilesreview. 25 February 2012. Archived from the original on 11 August 2017. Retrieved 6 October 2017.
- Gertz, Marisa; Grenier, Melinda (5 January 2019). “171 Years Before Tesla: The Evolution of Electric Vehicles”. Bloomberg. Archived from the original on 11 January 2019. Retrieved 30 September 2019.
- Cub Scout Car Show (PDF), January 2008, archived (PDF) from the original on 4 March 2016, retrieved 12 April 2009
- Laukkonen, J.D. (1 October 2013). “History of the Starter Motor”. Crank Shift. Archived from the original on 21 September 2019. Retrieved 30 September 2019.
- Gosden, D.F. (March 1990). “Modern Electric Vehicle Technology using an AC Motor Drive”. Journal of Electrical and Electronics Engineering. Institution of Engineers Australia. 10 (1): 21–7. ISSN 0725-2986. Archived from the original on 11 October 2019. Retrieved 11 October 2019.
- “1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated”. The Silicon Engine. Computer History Museum. Archived from the original on 20 February 2020. Retrieved 11 October 2019.
- “Who Invented the Transistor?”. Computer History Museum. 4 December 2013. Archived from the original on 20 July 2019. Retrieved 20 July 2019.
- Oxner, E. S. (1988). Fet Technology and Application. CRC Press. p. 18. ISBN 9780824780500. Archived from the original on 30 December 2019. Retrieved 11 October 2019.
- “1971: Microprocessor Integrates CPU Function onto a Single Chip”. The Silicon Engine. Computer History Museum. Archived from the original on 30 October 2019. Retrieved 22 July 2019.
- Scrosati, Bruno; Garche, Jurgen; Tillmetz, Werner (2015). Advances in Battery Technologies for Electric Vehicles. Woodhead Publishing. ISBN 9781782423980. Archived from the original on 29 December 2019. Retrieved 11 October 2019.
- “IEEE Medal for Environmental and Safety Technologies Recipients”. IEEE Medal for Environmental and Safety Technologies. Institute of Electrical and Electronics Engineers. Archived from the original on 25 March 2019. Retrieved 29 July 2019.
- Sperling, Daniel; Gordon, Deborah (2009). Two billion cars: driving toward sustainability. Oxford University Press. pp. 22–26. ISBN 978-0-19-537664-7.
- Boschert, Sherry (2006). Plug-in Hybrids: The Cars that will Recharge America. New Society Publishers. pp. 15–28. ISBN 978-0-86571-571-4.
- See Who Killed the Electric Car? (2006)
- Shahan, Zachary (26 April 2015). “Electric Car Evolution”. Clean Technica. Archived from the original on 18 September 2016. Retrieved 8 September 2016. 2008: The Tesla Roadster becomes the first production electric vehicle to use lithium-ion battery cells as well as the first production electric vehicle to have a range of over 200 miles on a single charge.
- Kim, Chang-Ran (30 March 2010). “Mitsubishi Motors lowers price of electric i-MiEV”. Reuters. Retrieved 22 May 2020.
- “Best-selling electric car”. Guinness World Records. 2012. Archived from the original on 16 February 2013. Retrieved 22 May 2020.
- David B. Sandalow, ed. (2009). Plug-In Electric Vehicles: What Role for Washington? (1st. ed.). The Brookings Institution. pp. 1–6. ISBN 978-0-8157-0305-1. Archived from the original on 28 March 2019. Retrieved 6 February 2011.See Introduction
- Evans, Scott (10 July 2019). “2013 Tesla Model S Beats Chevy, Toyota, and Cadillac for Ultimate Car of the Year Honors”. MotorTrend. Archived from the original on 13 July 2019. Retrieved 17 July 2019.
We are confident that, were we to summon all the judges and staff of the past 70 years, we would come to a rapid consensus: No vehicle we’ve awarded, be it Car of the Year, Import Car of the Year, SUV of the Year, or Truck of the Year, can equal the impact, performance, and engineering excellence that is our Ultimate Car of the Year winner, the 2013 Tesla Model S.
- Nissan (3 December 2020). “Nissan marks 10 years of LEAF sales, with over 500,000 sold worldwide” (Press release). Retrieved 11 December 2020 – via Automotive World.
Nissan today celebrated the 10th anniversary of the Nissan LEAF and the delivery of 500,000 LEAF vehicles since the model was first introduced. More than 148,000 have been sold in the United States
Best, Paul (19 November 2020). “GM doubles down on commitment to electric vehicles, increases spending to $27B”. FOXBusiness. Retrieved 20 November 2020.