What’s The Difference Between Covid-19 Coronavirus Vaccines

Coronavirus COVID-19 single dose small vials and multi dose in scientist hands concept. Research for new novel corona virus immunization drug.

The world can’t return to normal without safe and effective vaccines against the SARS-CoV-2 coronavirus along with a coordinated global vaccination programme.

Researchers have been racing to develop potential drugs that could help end the ongoing Covid-19 pandemic. There are currently around 200 vaccine candidates and about a quarter passed preclinical tests and are now undergoing clinical trials.

What’s the difference between the various candidate vaccines?

A pie chart of candidates can be cut several ways. One is to slice it into six uneven pieces according to the technology (or ‘platform’) that’s used to produce the drug. Those six technologies can be grouped into three broader categories: dead or disabled viruses, artificial vectors, and viral components.

Dead or disabled viruses

Traditional vaccines contain a dead or disabled virus, designed to be incapable of causing severe disease while also provoking an immune response that provides protection against the live virus.

1. Live-attenuated viruses

Attenuated means ‘weakened’. Weakening a live virus typically involves reducing its virulence — capacity to cause disease — or ability to replicate through genetic engineering. The virus still infects cells and causes mild symptoms.

For a live-attenuated virus, an obvious safety concern is that the virus might gain genetic changes that enable it to revert back to the more virulent strain. Another worry is that a mistake during manufacturing could produce a defective vaccine and cause a disease outbreak, which once happened with a polio vaccine. MORE FOR YOUJapan Has Opened Hayabusa2’s Capsule, Confirming It Contains Samples From Asteroid RyuguDonald Trump’s Presidency Will End On The Day Of A Comet, A Meteor Shower And A Total Eclipse Of The SunIn A New Epidemiological Study, Daily Doses Of Glucosamine/Chondroitin Are Linked To Lower All-Cause Mortality

But using a live-attenuated virus has one huge benefit: vaccination resembles natural infection, which usually leads to robust immune responses and a memory of the virus’ antigens that can last for many years.

Live-attenuated vaccines based on SARS-CoV-2 are still undergoing preclinical testing, developed by start-up Codagenix and the Serum Institute of India.

2. Inactivated viruses

Inactivated means ‘dead’ (‘inactivated’ is used because some scientists don’t consider viruses to be alive). The virus will be the one you want to create a vaccine against, such as SARS-CoV-2, which is usually killed with chemicals.

Two Chinese firms have developed vaccines that are being tested for safety and effectiveness in large-scale Phase III clinical trials: ‘CoronaVac’ (previously ‘PiCoVacc’) from Sinovac Biotech and ‘New Crown COVID-19’ from Sinopharm. Both drugs contain inactivated virus, didn’t cause serious adverse side-effects and prompted the immune system to produce antibodies against SARS-CoV-2.

Sinopharm’s experimental vaccine has reportedly been administered to hundreds of thousands of people in China, and both drugs are now being trialled in countries across Asia, South America and the Middle East.

COVID-19 vaccine landscape (left) and platforms for SARS-CoV-2 vaccine development (right)
The global COVID-19 vaccine landscape (left) and Vaccine platforms used for SARS-CoV-2 vaccine … [+] Springer

Artificial vectors

Another conventional approach in vaccine design is to artificially create a vehicle or ‘vector’ that can deliver specific parts of a virus to the adaptive immune system, which then learns to target those parts and provides protection.

That immunity is achieved by exposing your body to a molecule that prompts the system to generate antibodies, an antigen, which becomes the target of an immune response. SARS-CoV-2 vaccines aim to target the spike protein on the surface of coronavirus particles — the proteins that allows the virus to invade a cell.

3. Recombinant viruses

A recombinant virus is a vector that combines the target antigen from one virus with the ‘backbone’ from another — unrelated — virus. For SARS-CoV-2, the most common strategy is to put coronavirus spike proteins on an adenovirus backbone.

Recombinant viruses are a double-edged sword: they behave like live-attenuated viruses, so a recombinant vaccine comes with the potential benefits of provoking a robust response from the immune system but also potential costs from causing an artificial infection that might lead to severe symptoms.

A recombinant vaccine might not provoke an adequate immune response in people who have previously been exposed to adenoviruses that infect humans (some cause the common cold), which includes one candidate developed by CanSino Biologics in China and ‘Sputnik V’ from Russia’s Gamaleya National Research Centre — both of which are in Phase III clinical trials and are licensed for use in the military.

To maximize the chance of provoking immune responses, some vaccines are built upon viruses from other species, so humans will have no pre-existing immunity. The most high-profile candidate is ‘AZD1222’, better known as ‘ChAdOx1 nCoV-19’ or simply ‘the Oxford vaccine’ because it was designed by scientists at Oxford University, which will be manufactured by AstraZeneca. AZD1222 is based on a chimpanzee adenovirus and seems to be 70% effective at preventing Covid-19.

Some recombinant viruses can replicate in cells, others cannot — known as being ‘replication-competent’ or ‘replication-incompetent’. One vaccine candidate that contains a replicating virus, developed by pharmaceutical giant Merck, is based on Vesicular Stomatitis Virus (VSV), which infects guinea pigs and other pets.

4. Virus-like particles

A virus-like particle, or VLP, is a structure assembled from viral proteins. It resembles a virus but doesn’t contain the genetic material that would allow the VLP to replicate. For SARS-CoV-2, the VLP obviously includes the spike protein.

One coronavirus-like particle (Co-VLP) vaccine from Medicago has passed Phase I trials to test it’s safe and has entered Phase II to test that it’s effective.

While there are currently few VLPs being developed for Covid-19, the technology is well-established and has been used to produce commercial vaccines against human papillomavirus (HPV) and hepatitis B.

Viral components

All vaccines are ultimately designed to expose the immune system to parts of a virus, not the whole thing, so why not deliver just those parts? That’s the reasoning behind vaccines that only contain spike proteins or spike genes.

5. Proteins

Protein-based vaccines can consist of the full-length spike protein or the key part, the tip of the spike that binds the ACE2 receptor on the surface of a cell — ACE2 is the lock that a coronavirus picks in order to break into the cell.

Manufacturing vaccines containing the protein alone has a practical advantage: researchers don’t have to deal with live coronaviruses, which should be grown inside cells within a biosafety level-3 lab.

A vaccine against only part of the protein — a ‘subunit’ — will be more vulnerable to being rendered useless if random mutations alter the protein, known as ‘antigenic drift‘, but full-length proteins are harder to manufacture. The immune system can recognize either as an antigen.

One candidate vaccine based on protein subunits is ‘NVX-CoV2373’ from Novavax, where the spike subunits are arranged as a rosette structure. It’s similar to a vaccine that’s already been licensed for use, FluBlok, which contains rosettes of protein subunits from the influenza virus.

6. Nucleic acids

Nucleic-acid vaccines contain genetic material, either deoxyribonucleic acid or ribonucleic acid — DNA or RNA. In a coronavirus vaccine, the DNA or RNA carries genetic instructions for producing a spike protein, which is made within cells.

Those spike genes can be carried on rings of DNA called ‘plasmids’, which are easy to manufacture by growing them in bacteria. DNA provokes a relatively weak immune response, however, and can’t simply be injected inside the body — the vaccine must be administered using a special device to force DNA into cells. Four DNA-based candidates are in Phase I or II trials.

The two most famous nucleic-acid vaccines are the drugs being developed by pharmaceutical giant Pfizer, partnered with BioNTech, and Moderna. Pfizer’s ‘BNT162b2’ and Moderna’s ‘mRNA-1273’ both use ‘messenger RNA’ — mRNA — to carry the spike genes and are delivered into cells via a lipid nanoparticle (LNP). The two mRNA vaccines have completed Phase III trials and preliminary results suggests they’re over 90% effective at preventing Covid-19.

As the above examples show, not only there are many potential vaccines but also various approaches. And while some technologies have already provided promising results, it remains to be seen which will actually be able to defeat the virus.

Full coverage and live updates on the CoronavirusFollow me on Twitter or LinkedIn. Check out my website or some of my other work here

JV Chamary

JV Chamary

I’m a science communicator specialising in public engagement and outreach through entertainment, focusing on popular culture. I have a PhD in evolutionary biology and…

.

.

TODAY

Dr. Ashish Jha, dean of Brown University’s School of Public Health, joins the 3rd hour of TODAY to break down the differences between Moderna’s and Pfizer’s coronavirus vaccine candidates. He also comments on speculation of another national shutdown and whether families should still get together over Thanksgiving. » Subscribe to TODAY: http://on.today.com/SubscribeToTODAY » Watch the latest from TODAY: http://bit.ly/LatestTODAY About: TODAY brings you the latest headlines and expert tips on money, health and parenting. We wake up every morning to give you and your family all you need to start your day. If it matters to you, it matters to us. We are in the people business. Subscribe to our channel for exclusive TODAY archival footage & our original web series. Connect with TODAY Online! Visit TODAY’s Website: http://on.today.com/ReadTODAY Find TODAY on Facebook: http://on.today.com/LikeTODAY Follow TODAY on Twitter: http://on.today.com/FollowTODAY Follow TODAY on Instagram: http://on.today.com/InstaTODAY Follow TODAY on Pinterest: http://on.today.com/PinTODAY#COVID19Vaccines#AshishJha#TodayShow

Billionaire Eric Lefkofsky’s Tempus Raises $200 Million To Bring Personalized Medicine To New Diseases

On the surface, Eric Lefkofsky’s Tempus sounds much like every other AI-powered personalized medicine company. “We try to infuse as much data and technology as we can into the diagnosis itself,” Lefkofsky says, which could be said by the founder of any number of new healthcare companies.. But what makes Tempus different is that it is quickly branching out, moving from a focus on cancer to additional programs including mental health, infectious diseases, cardiology and soon diabetes. “We’re focused on those disease areas that are the most deadly,” Lefkofsky says. 

Now, the billionaire founder has an additional $200 million to reach that goal. The Chicago-based company announced the series G-2 round on Thursday, which includes a massive valuation of $8.1 billion. Lefkofsky, the founder of multiple companies including Groupon, also saw his net worth rise from the financing, from an estimated $3.2 billion to an estimated $4.2 billion.

Tempus is “trying to disrupt a very large industry that is very complex,” Lefkofsky says, “we’ve known it was going to cost a lot of money to see our business model to fruition.” 

In addition to investors Baillie Gifford, Franklin Templeton, Novo Holdings, and funds managed by T. Rowe Price, Lefkofsky, who has invested about $100 million of his own money into the company since inception, also contributed an undisclosed amount to the round. Google also participated as an investor, and Tempus says it will now store its deidentified patient data on Google Cloud. 

PROMOTED Google Cloud BrandVoice | Paid Program How Anthos And Multi-Cloud Are Transforming Enterprise IT UNICEF USA BrandVoice | Paid Program Protecting Children In Venezuela During The Pandemic AWS Infrastructure Solutions BrandVoice | Paid Program Studios Of The Future: A Hybrid Cloud Model For Media & Entertainment

“We are particularly attracted to companies that aim to solve fundamental and complex challenges within life sciences,” says Robert Ghenchev, a senior partner at Novo Holdings. “Tempus is, in many respects, the poster child for the kind of companies we like to support.” 

MORE FOR YOUTony Hsieh’s American Tragedy: The Self-Destructive Last Months Of The Zappos VisionaryWhy 40 North Ventures Bought GE Ventures’ Stakes In 11 Industrial StartupsAt-Home Health Testing Company Everlywell Raises $175 Million Series D Round At A $1.3 Billion Valuation

Tempus, founded by Lefkofsky in 2015, is one of a new breed of personalized cancer diagnostic companies like Foundation Medicine and Guardant Health. The company’s main source of revenue comes from sequencing the genome of cancer patients’ tumors in order to help doctors decide which treatments would be most effective. “We generate a lot of molecular data about you as a patient,” Lefkofsky says. He estimates that Tempus has the data of about 1 in 3 cancer patients in the United States. 

But billing insurance companies for sequencing isn’t the only way the company makes money. Tempus also offers a service that matches eligible patients to clinical trials, and it licenses  de-identified patient data to other players in the oncology industry. That patient data, which includes images and clinical information, is “super important and valuable,” says Lefkofsky, who adds that such data sharing only occurs if patients consent. 

At first glance, precision oncology seems like a crowded market, but analysts say there is still plenty of room for companies to grow. “We’re just getting started in this market,” says Puneet Souda, a senior research analyst at SVB Leerink, “[and] what comes next is even larger.” Souda estimates that as the personalized oncology market expands from diagnostics to screening, another $30 billion or more will be available for companies to snatch up. And Tempus is already thinking ahead by moving into new therapeutic areas. 

While it’s not leaving cancer behind, Tempus has branched into other areas of precision medicine over the last year, including cardiology and mental health. The company now offers a service for psychiatrists to use a patient’s genetic information to determine the best treatments for major depressive disorder. 

In May, Lefkofsky also pushed the company to use its expertise to fight the coronavirus pandemic. The company now offers PCR tests for Covid-19, and has run over 1 million so far. The company also sequences other respiratory pathogens, such as the flu and soon pneumonia. As with cancer, Tempus will continue to make patient data accessible for others in the field— for a price. “Because we have one of the largest repositories of data in the world,” says Lefkofsky, “[it is imperative] that we make it available to anyone.” 

Lefkofsky plans to use capital from the latest funding round to continue Tempus’ expansion and grow its team. The company has hired about 700 since the start of the pandemic, he says, and currently has about 1,800 employees. He wouldn’t comment on exact figures, but while the company is not yet profitable he says Tempus has reached “significant scale in terms of revenue.” 

And why is he so sure that his company’s massive valuation isn’t over-inflated? “We benefit from two really exciting financial sector trends,” he says: complex genomic profiling and AI-driven health data. Right now, Lefkofsky estimates, about one-third of cancer patients have their tumors sequenced in three years. Soon, he says, that number will increase to two-thirds of patients getting their tumors sequenced multiple times a year. “The space itself is very exciting,” he says, “we think it will grow dramatically.” Follow me on Twitter. Send me a secure tip

Leah Rosenbaum

Leah Rosenbaum

I am the assistant editor of healthcare and science at Forbes. I graduated from UC Berkeley with a Master’s of Journalism and a Master’s of Public Health, with a specialty in infectious disease. Before that, I was at Johns Hopkins University where I double-majored in writing and public health. I’ve written articles for STAT, Vice, Science News, HealthNewsReview and other publications. At Forbes, I cover all aspects of health, from disease outbreaks to biotech startups.

.

.

Eric Lefkofsky

To impact the nearly 1.7 million Americans who will be newly diagnosed with cancer this year, Eric Lefkofsky, co-founder and CEO of Tempus, discusses with Matter CEO Steven Collens how he is applying his disruptive-technology expertise to create an operating system to battle cancer. (November 29, 2016)

For access to live and exclusive video from CNBC subscribe to CNBC PRO: https://cnb.cx/2JdMwO7 » Subscribe to CNBC TV: https://cnb.cx/SubscribeCNBCtelevision » Subscribe to CNBC: https://cnb.cx/SubscribeCNBC » Subscribe to CNBC Classic: https://cnb.cx/SubscribeCNBCclassic Turn to CNBC TV for the latest stock market news and analysis. From market futures to live price updates CNBC is the leader in business news worldwide. Connect with CNBC News Online Get the latest news: http://www.cnbc.com/ Follow CNBC on LinkedIn: https://cnb.cx/LinkedInCNBC Follow CNBC News on Facebook: https://cnb.cx/LikeCNBC Follow CNBC News on Twitter: https://cnb.cx/FollowCNBC Follow CNBC News on Instagram: https://cnb.cx/InstagramCNBC

.

.

The Robot Will See You Now: Could Computers Take Over Medicine Entirely – Tim Adams

1.jpg

Like all everyday miracles of technology, the longer you watch a robot perform surgery on a human being, the more it begins to look like an inevitable natural wonder.

Earlier this month I was in an operating theatre at University College Hospital in central London watching a 59-year-old man from Potters Bar having his cancerous prostate gland removed by the four dexterous metal arms of an American-made machine, in what is likely a glimpse of the future of most surgical procedures.

The robot was being controlled by Greg Shaw, a consultant urologist and surgeon sitting in the far corner of the room with his head under the black hood of a 3D monitor, like a Victorian wedding photographer. Shaw was directing the arms of the remote surgical tool with a fluid mixture of joystick control and foot-pedal pressure and amplified instruction to his theatre team standing at the patient’s side. The surgeon, 43, has performed 500 such procedures, which are particularly useful for pelvic operations; those, he says, in which you are otherwise “looking down a deep, dark hole with a flashlight”.

The first part of the process has been to “dock the cart on to the human”. After that, three surgical tools and a video camera, each on the end of a 30cm probe, have been inserted through small incisions in the patient’s abdomen. Over the course of an hour or more Shaw then talks me through his actions.

“I’m just going to clip his vas deferens now,” he says, and I involuntarily wince a little as a tiny robot pincer hand, magnified 10 times on screens around the operating theatre, comes into view to permanently cut off sperm supply. “Now I’m trying to find that sweet spot where the bladder joins the prostate,” Shaw says, as a blunt probe gently strokes aside blood vessels and finds its way across the surface of the plump organ on the screen, with very human delicacy.

After that, a mesmerising rhythm develops of clip and cauterise and cut as the velociraptor pairing of “monopolar curved scissors” and “fenestrated bipolar forceps” is worked in tandem – the surprisingly exaggerated movements of Shaw’s hands and arms separating and sealing tiny blood vessels and crimson connective tissue deep within the patient’s pelvis 10ft away. In this fashion, slowly, the opaque walnut of the prostate emerges on screen through tiny plumes of smoke from the cauterising process.

This operation is part of a clinical trial of a procedure pioneered in German hospitals that aims to preserve the fine architecture of microscopic nerves around the prostate – and with them the patient’s sexual function. With the patient still under anaesthetic, the prostate, bagged up internally and removed, will be frozen and couriered to a lab at the main hospital site a mile away to determine if cancer exists at its edges. If it does, it may be necessary for Shaw to cut away some of these critical nerves to make sure all trace of malignancy is removed. If no cancer is found at the prostate’s margins the nerves can be saved. While the prostate is dispatched across town, Shaw uses a minuscule fish hook on a robot arm to deftly sew bladder to urethra.

 
‘The technique itself feels like driving and the 3D vision is very immersive’: Greg Shaw controls
the robot as it operates on a patient Photograph: Jude Edginton for the Observer

The Da Vinci robot that Shaw is using for this operation, made by the American firm Intuitive Surgical, is about as “cutting edge” as robotic health currently gets. The £1.5m machine enables the UCH team to do 600 prostate operations a year, a four-fold increase on previous, less precise, manual laparoscopic techniques.

Mostly, Shaw does three operations one or two days a week, but there have been times, with colleagues absent, when he has done five or six days straight. “If you tried to do that with old-fashioned pelvic surgery, craning over the patient, you would be really hurting, your shoulders and your back would seize up,” he says.

There are other collateral advantages of the technology. It lends itself to accelerated and effective training both because it retains a 3D film of all the operations conducted, and enables a virtual-reality suite to be plugged in – like learning to fly a plane using a simulator. The most important benefit however is the greater safety and fewer complications the robot delivers.

I wonder if it changes the psychological relationship between surgeon and patient, that palpable intimacy.

Shaw does not believe so. “The technique itself feels like driving,” he says. “But that 3D vision is very immersive. You are getting lots of information and very little distraction and you are seeing inside the patient from 2cm away.”

There are, he says, still diehards doing prostatectomies as open surgery, but he finds it hard to believe that their patients are fully informed about the alternatives. “Most people come in these days asking for the robot.”

If a report published this month on the future of the NHS is anything to go by, it is likely that “asking for the robot” could increasingly be the norm in hospitals. The interim findings of the Institute for Public Policy Research’s long-term inquiry into the future of health – led by Lord Darzi, the distinguished surgeon and former minister in Gordon Brown’s government – projected that many functions traditionally performed by doctors and nurses could be supplanted by technology.

“Bedside robots,” the report suggested, may soon be employed to help feed patients and move them between wards, while “rehabilitation robots” would assist with physiotherapy after surgery. The centuries-old hands-on relationship between doctor and patient would inevitably change. “Telemedicine” would monitor vital signs and chronic conditions remotely; online consultations would be routine, and someone arriving at A&E “may begin by undergoing digital triage in an automated assessment suite”.

2.jpg

Even the consultant’s accumulated wisdom will be superseded. Machine-learning algorithms fed with “big data” would soon be employed to “make more accurate diagnoses of diseases such as pneumonia, breast and skin cancers, eye diseases and heart conditions”. By embracing a process to achieve “full automation” Lord Darzi’s report projects that £12.5bn a year worth of NHS staff time (£250m a week) would be saved “for them to spend interacting with patients” – a belief that sounds like it would be best written on the side of a bus.

While some of these projections may sound far more than the imagined decade away, others are already a reality. Increasingly, the data from sensors and implants measuring blood sugars and heart rhythms is collected and fed directly to remote monitors; in London, the controversial pilot scheme GP@Hand has seen more than 40,000 people take the first steps toward a “digital health interface” by signing up for online consultations accessed through an app – and in the process, de-registering from their bricks-and-mortar GP surgery. Meanwhile, at the sharpest end of healthcare – in the operating theatre – robotic systems like the one used by Greg Shaw are already proving the report’s prediction that machines will carry out surgeries with greater dexterity than humans. As a pioneer of robotic surgical techniques, Lord Darzi knows this better than most.Bedside robots will feed patients while others would assist with physio

In a way, it is surprising that it has taken so long to reach this point. Hands-off surgery was first developed by the US military at the end of the last century. In the 1990s the Pentagon wanted to explore ways in which operations at M*A*S*H-style field hospitals might be performed by robots controlled by surgeons at a safe distance from the battlefield. Their investment in Intuitive Surgical and its Da Vinci prototype has given the Californian company – valued at $62bn – a virtual monopoly, fiercely guarded, with 4,000 robots now operating around the world.

Jaime Wong MD is the consultant lead on the R&D programme at Intuitive Surgical. He is also a urologist who has been using a Da Vinci robot for more than a decade and watched it evolve from original 2D displays that involved more spatial guesswork, to the current far more manoeuvrable and all-seeing version.

Wong still enjoys seeing traditional open surgeons witnessing a robotic operation for the first time and “watching the amazement on their faces at all the things they did not quite realise are located in that area”.

In the next stage of development, he sees artificial intelligence (AI) and machine learning playing a significant role in the techniques. “Surgery is becoming digitised, from imaging to movement to sensors,” he says, “and everything is translating into data. The systems have a tremendous amount of computational power and we have been looking at segmenting procedures. We believe, for example, we can use these processes to reduce or eliminate inadvertent injuries.”

Up until recently, Da Vinci, having stolen a march on any competition, has had this field virtually to itself. In the coming year, that is about to change. Google has, inevitably, developed a competitor (with Johnson & Johnson) called Verb. The digital surgery platform – which promises to “combine the power of robotics, advanced instrumentation, enhanced visualisation, connectivity and data analytics” – aims to “democratise surgery” by bringing the proportion of robot-assisted surgeries from the current 5% up to 75%. In Britain, meanwhile, a 200-strong company called CMR Surgical (formerly Cambridge Medical Robotics) is close to approval for its pioneering system, Versius, which it hopes to launch this year.

Wong says he welcomes the competition: “I tend to think it validates what we have been doing for two decades.”

The latest creators of robot surgeons see ways to move the technology into new areas. Martin Frost, CEO of the Cambridge company, tells me how the development of Versius has involved the input of hundreds of surgeons with different soft-tissue specialities, to create a portable and modular system that could operate not just in pelvic areas but in more inaccessible parts of the head, neck and chest.

“Every operating room in the world currently possesses one essential component, which is the surgeons’ arm and hand,” Frost says. “We have taken all of the advantages of that form to make something that is not only bio-mimicking but bio-enhancing.” The argument for the superiority of minimally invasive surgery is pretty much won, Frost suggests: “The robotic genie is out of the bottle.”

And what about that next stage – does Frost see a future in which AI-driven techniques are involved in the operation itself?

“We see it in small steps,” he says. “We think that it is possible, within a few years, that a robot may do part of certain procedures ‘itself’, but we are obviously a very long way from a machine doing diagnosis and cure, and there being no human involved.”A specialist mentor could be looking at different camera views, providing second opinions. It will be like ‘phone a friend’

The other holy grail of telesurgery – the possibility of remote “battlefield” operations – is closer to being a reality. In a celebrated instance, Dr Jacques Marescaux, a surgeon in Manhattan, used a protected high-speed connection and remote controls to successfully remove the gallbladder of a patient 3,800 miles away in Strasbourg in 2001. Since then there have been isolated instances of other remote operations but no regular programme.

In 2011, the US military funded a five-year research project to determine how feasible such a programme might be with existing technology. It was led by Dr Roger Smith at the Nicholson Center for advanced surgery in Florida.

Smith explained to me how his study was primarily to determine two things: first, latency – the tiny time lag of high-speed connections over large distances – and second, how that lag interfered with a surgeon’s movements. His studies found that if the lag rose above 250 milliseconds “the surgeon begins to see or sense that something is not quite right”. But also that using existing data connections, between major cities, or at least between major hospital systems, “the latency was always well below what a human surgeon could perceive”.

The problem lay in the risk of unreliability of the connection. “We all live on the internet,” Smith says. “Most of the time your internet connection is fantastic. Just occasionally your data slows to a crawl. The issue is you don’t know when that will happen. If it occurs during a surgery you are in trouble.” No surgeon – or patient – would like to see a buffering symbol on their screen.

The ways around that would involve dedicated networks – five lines of connectivity with a performance level at least two times what you would ever need, Smith says, “so that the chances of having an issue were like one in a million”.

Those kinds of connections are available, but the lack of investment is more one of regulation and liability than cost. Who would bear the risk of connection failure? The state in which the surgeon was located, or that in which the patient was anaesthetised – or the countries through which the cable passed? As a result, Smith says: “In the civilian world, there are few situations where you would say this is a must-have thing.”

He envisages three possible champions of telesurgery: the military, “If you could, say, create a connection where the surgeon could be in Italy and the patient in Iraq”; medical missionaries, “Where surgeons in the developed world worked through robots in places without advanced surgeons”; and Nasa, “At a point where you have enough people in space that you need to set up a way to do surgery.” For the time being the technology is not robust enough for any of these three.

For Jaime Wong the risks are likely to remain too great. Intuitive Surgical is pursuing the concepts of “telementoring” or “teleproctoring” rather than telesurgery. “The local surgeon would be performing the surgery, while our monitor would be remote,” he suggests, “and a specialist mentor could be looking at different camera views, providing second opinions. It will be like ‘phone a friend’.”

True telesurgery, Roger Smith suggests, also begs a further question, one which we may yet hear in the coming decade or so. “Would you have an operation without a surgeon in the room?” For the time being, the answer remains a no-brainer.

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

https://www.paypal.me/ahamidian

%d bloggers like this: