In 1903, TheNew York Times predicted it would take between 1 million and 10 million years to develop airplanes. The Wright Brothers took flight just nine weeks later. In 2023, the same levels of ambition, determination, and innovation will make green flight a reality, and the first commercial passenger planes fueled by hydrogen will take to the skies.
Aviation is the world’s fastest-growing contributor to climate change. According to a report by the International Coalition for Sustainable Aviation, by 2037 we will see an estimated doubling of air passengers to 8.2 billion. And by 2050, the sector could be responsible for as much as 22 percent of our total carbon emissions. We know that we have to cut global emissions in half by 2030—and that means addressing the rising contribution of the aviation sector, and quickly.
My company, ZeroAvia, is tackling the transition to zero-emission aviation through the development of hydrogen-electric engines for airplanes. These use hydrogen in fuel cells to generate electricity, which is then used to power electric motors to turn the aircraft’s propellers. Ultimately, we will put these engines in every type of aircraft—all the way up to large, commercial aircraft.
Why fuel cells? According to McKinsey, electric flight powered by hydrogen offers the best possible reduction in climate impact. Hydrogen fuel cells are between two and three times more energy efficient than current gas-guzzling fuel combustion engines. And the sole byproduct from these engines is water.
Alternatives, such as sustainable aviation fuel, do not tackle the problem of non-carbon emissions. Nitrogen oxides, particulates, soot, and high-temperature water vapor are all potent climate forcing agents. Combined, these have a larger climate change impact than carbon dioxide does alone. But for hydrogen-electric engines, they do not enter the equation.
What about batteries? Too heavy and too inefficient. Research from the University of Houston suggests eight airplanes would be required to carry the batteries needed to power a jumbo jet. What works for a Tesla doesn’t necessarily work for a Dreamliner.
Hydrogen is also abundant—as it can be produced from water—and it will only become cheaper to produce. According to PWC, the cost of green hydrogen will drop by 50 percent by 2030. On-site hydrogen production further lowers prices and makes the entire system zero-emission from end to end.
In 2023, we will finalize the design for the world’s first commercial hydrogen-electric aircraft engine, and we plan to enter the market by the following year. This will unlock commercial zero-emission flights of up to 300 miles, say, London to Glasgow, or San Francisco to Los Angeles. As well as powering new aircraft, hydrogen-electric engines can also be retro-fitted into existing planes, ensuring rapid market entry and enabling us to tackle the sector’s emissions sooner.
While converting the entire industry will take time, the road map is obvious. The UK’s Aerospace Technology Institute’s FlyZero project made it clear that hydrogen will be aviation’s fuel of the future. This year-long independent study commissioned by the UK government established that the first generation of zero-emission aircraft would need to include hydrogen technology by 2025.
The world’s biggest problem requires the farthest-reaching solutions, and support for hydrogen is growing in governments globally. Measures in the US Inflation Reduction Act will turbocharge the hydrogen economy, while the UK’s Jet Zero strategy aims to deliver net-zero aviation by the middle of the century. In 2023, accelerating innovation will meet this increasing political will, and hydrogen electricity will start the process of transforming aviation into a zero-emissions industry in a generation.
Our society faces the grand challenge of providing sustainable, secure, and affordable means of generating energy while trying to reduce carbon dioxide emissions to net zero around 2050. To date, developments in fusion power, which potentially ticks all these boxes, have been funded almost exclusively by the public sector. However, something is changing.sion
nucler
Private equity investment in the global fusion industry has more than doubled in just one year – from US$2.1 billion in 2021 to US$4.7 billion in 2022, according to a survey from the Fusion Industry Association.
So, what is driving this recent change? There’s lots to be excited about.Before we explore that, let’s take a quick detour to recap what fusion power is.
Merging atoms together
Fusion works the same way our Sun does, by merging two heavy hydrogen atoms under extreme heat and pressure to release vast amounts of energy.It’s the opposite of the fission process used by nuclear power plants, in which atoms are split to release large amounts of energy.
Sustaining nuclear fusion at scale has the potential to produce a safe, clean, almost inexhaustible power source. Our Sun sustains fusion at its core with a plasma of charged particles at around 15 million degrees Celsius. Down on Earth, we are aiming for hundreds of millions of degrees Celsius, because we don’t have the enormous mass of the Sun compressing the fuel down for us.
Scientists and engineers have worked out several designs for how we might achieve this, but most fusion reactors use strong magnetic fields to “bottle” and confine the hot plasma.
Generally, the main challenge to overcome on our road to commercial fusion power is to provide environments that can contain the intense burning plasma needed to produce a fusion reaction that is self-sustaining, producing more energy than was needed to get it started.
Joining the public and private
Fusion development has been progressing since the 1950s. Most of it was driven by government funding for fundamental science. Now, a growing number of private fusion companies around the world are forging ahead toward commercial fusion energy. A change in government attitudes has been crucial to this.
The US and UK governments are fostering public-private partnerships to complement their strategic research programs.For example, the White House recently announced it would develop a “bold decadal vision for commercial fusion energy“.
In the United Kingdom, the government has invested in a program aimed at connecting a fusion generator to the national electricity grid.
The technology has actually advanced, too
In addition to public-private resourcing, the technologies we need for fusion plants have come along in leaps and bounds.
In 2021, MIT scientists and Commonwealth Fusion Systems developed a record-breaking magnet that will allow them to build a compact fusion device called SPARC “that is substantially smaller, lower cost, and on a faster timeline”.
These incredible feats demonstrate an unprecedented ability to replicate conditions found inside our Sun and keep extremely hot plasma trapped long enough to encourage fusion to occur. In February, the Joint European Torus – the world’s most powerful operational tokamak – announced world-record energy confinement.
By focusing nearly 200 powerful lasers to confine and compress a target the size of a pencil’s eraser, they produced a small fusion “hot spot” generating fusion energy over a short time period. In Australia, a company called HB11 is developing proton-boron fusion technology through a combination of high-powered lasers and magnetic fields.
Fusion and renewables can go hand in hand
It is crucial that investment in fusion is not at the cost of other forms of renewable energy and the transition away from fossil fuels. We can afford to expand adoption of current renewable energy technology like solar, wind, and pumped hydro while also developing next-generation solutions for electricity production.
This exact strategy was outlined recently by the United States in its Net-Zero Game Changers Initiative. In this plan, resource investment will be targeted to developing a path to rapid decarbonization in parallel with the commercial development of fusion.
History shows us that incredible scientific and engineering progress is possible when we work together with the right resources – the rapid development of COVID-19 vaccines is just one recent example.
It is clear many scientists, engineers, and now governments and private investors (and even fashion designers) have decided fusion energy is a solution worth pursuing, not a pipe dream. Right now, it’s the best shot we’ve yet had to make fusion power a viable reality.
Renewable energy is energy that has been derived from earth’s natural resources that are not finite or exhaustible, such as wind and sunlight. Renewable energy is an alternative to the traditional energy that relies on fossil fuels, and it tends to be much less harmful to the environment.
7 Types of Renewable Energy
Solar
Solar energy is derived by capturing radiant energy from sunlight and converting it into heat, electricity, or hot water. Photovoltaic (PV) systems can convert direct sunlight into electricity through the use of solar cells.
Benefits
One of the benefits of solar energy is that sunlight is functionally endless. With the technology to harvest it, there is a limitless supply of solar energy, meaning it could render fossil fuels obsolete. Relying on solar energy rather than fossil fuels also helps us improve public health and environmental conditions.
In the long term, solar energy could also eliminate energy costs, and in the short term, reduce your energy bills. Many federal local, state, and federal governments also incentivize the investment in solar energy by providing rebates or tax credits.
Current Limitations
Although solar energy will save you money in the long run, it tends to be a significant upfront cost and is an unrealistic expenses for most households. For personal homes, homeowners also need to have the ample sunlight and space to arrange their solar panels, which limits who can realistically adopt this technology at the individual level.
Wind
Wind farms capture the energy of wind flow by using turbines and converting it into electricity. There are several forms of systems used to convert wind energy and each vary. Commercial grade wind-powered generating systems can power many different organizations, while single-wind turbines are used to help supplement pre-existing energy organizations.
Another form is utility-scale wind farms, which are purchased by contract or wholesale. Technically, wind energy is a form of solar energy. The phenomenon we call “wind” is caused by the differences in temperature in the atmosphere combined with the rotation of Earth and the geography of the planet.
Benefits
Wind energy is a clean energy source, which means that it doesn’t pollute the air like other forms of energy. Wind energy doesn’t produce carbon dioxide, or release any harmful products that can cause environmental degradation or negatively affect human health like smog, acid rain, or other heat-trapping gases.[2] Investment in wind energy technology can also open up new avenues for jobs and job training, as the turbines on farms need to be serviced and maintained to keep running.
Current Limitations
Since wind farms tend to be built in rural or remote areas, they are usually far from bustling cities where the electricity is needed most. Wind energy must be transported via transition lines, leading to higher costs. Although wind turbines produce very little pollution, some cities oppose them since they dominate skylines and generate noise. Wind turbines also threaten local wildlife like birds, which are sometimes killed by striking the arms of the turbine while flying.
Hydroelectric
Dams are what people most associate when it comes to hydroelectric power. Water flows through the dam’s turbines to produce electricity, known as pumped-storage hydropower. Run-of-river hydropower uses a channel to funnel water through rather than powering it through a dam.
Benefits
Hydroelectric power is very versatile and can be generated using both large scale projects, like the Hoover Dam, and small scale projects like underwater turbines and lower dams on small rivers and streams. Hydroelectric power does not generate pollution, and therefore is a much more environmentally-friendly energy option for our environment.
Current Limitations
Most U.S. hydroelectricity facilities use more energy than they are able to produce for consumption. The storage systems may need to use fossil fuel to pump water.[3] Although hydroelectric power does not pollute the air, it disrupts waterways and negatively affects the animals that live in them, changing water levels, currents, and migration paths for many fish and other freshwater ecosystems.
Geothermal
Geothermal heat is heat that is trapped beneath the earth’s crust from the formation of the Earth 4.5 billion years ago and from radioactive decay. Sometimes large amounts of this heat escapes naturally, but all at once, resulting in familiar occurrences, such as volcanic eruptions and geysers. This heat can be captured and used to produce geothermal energy by using steam that comes from the heated water pumping below the surface, which then rises to the top and can be used to operate a turbine.
Benefits
Geothermal energy is not as common as other types of renewable energy sources, but it has a significant potential for energy supply. Since it can be built underground, it leaves very little footprint on land. Geothermal energy is naturally replenished and therefore does not run a risk of depleting (on a human timescale).
Current Limitations
Cost plays a major factor when it comes to disadvantages of geothermal energy. Not only is it costly to build the infrastructure, but another major concern is its vulnerability to earthquakes in certain regions of the world.
Ocean
The ocean can produce two types of energy: thermal and mechanical. Ocean thermal energy relies on warm water surface temperatures to generate energy through a variety of different systems. Ocean mechanical energy uses the ebbs and flows of the tides to generate energy, which is created by the earth’s rotation and gravity from the moon.
Benefits
Unlike other forms of renewable energy,wave energy is predictable and it’s easy to estimate the amount of energy that will be produced. Instead of relying on varying factors, such as sun and wind, wave energy is much more consistent. This type of renewable energy is also abundant, the most populated cities tend to be near oceans and harbors, making it easier to harness this energy for the local population.
The potential of wave energy is an astounding as yet untapped energy resource with an estimated ability to produce 2640 TWh/yr. Just 1 TWh/yr of energy can power around 93,850 average U.S. homes with power annually, or about twice than the number of homes that currently exist in the U.S. at present.[4]
Current Limitations
Those who live near the ocean definitely benefit from wave energy, but those who live in landlocked states won’t have ready access to this energy. Another disadvantage to ocean energy is that it can disturb the ocean’s many delicate ecosystems.
Although it is a very clean source of energy, large machinery needs to be built nearby to help capture this form energy, which can cause disruptions to the ocean floor and the sea life that habitats it. Another factor to consider is weather, when rough weather occurs it changes the consistency of the waves, thus producing lower energy output when compared to normal waves without stormy weather.
Hydrogen
Hydrogen needs to be combined with other elements, such as oxygen to make water as it does not occur naturally as a gas on its own. When hydrogen is separated from another element it can be used for both fuel and electricity.
Benefits
Hydrogen can be used as a clean burning fuel, which leads to less pollution and a cleaner environment. It can also be used for fuel cells which are similar to batteries and can be used for powering an electric motor.
Current Limitations
Since hydrogen needs energy to be produced, it is inefficient when it comes to preventing pollution.
Biomass
Bioenergy is a renewable energy derived from biomass. Biomass is organic matter that comes from recently living plants and organisms. Using wood in your fireplace is an example of biomass that most people are familiar with.
There are various methods used to generate energy through the use of biomass. This can be done by burning biomass, or harnessing methane gas which is produced by the natural decomposition of organic materials in ponds or even landfills.
Benefits
The use of biomass in energy production creates carbon dioxide that is put into the air, but the regeneration of plants consumes the same amount of carbon dioxide, which is said to create a balanced atmosphere. Biomass can be used in a number of different ways in our daily lives, not only for personal use, but businesses as well.
In 2017, energy from biomass made up about 5% of the total energy used in the U.S. This energy came from wood, biofuels like ethanol, and energy generated from methane captured from landfills or by burning municipal waste.
An electric warehouse forklift uses Plug Power's fuel cell system. Plug Power
Plug Power, which supplies fuel cells for electric forklifts used by Amazon and other companies, said the retail giant plans to buy thousands of tons of carbon-free “green” hydrogen from it per year in a deal that also includes an option to acquire a stake in the company worth up to $2.1 billion.
Under the agreement Plug will begin providing Amazon with 10,950 tons of liquified hydrogen per year that will be used to fuel transportation and building operations, starting in 2025. It’s the biggest such deal to date for the Latham, New York-based company, which expects to hit an annual revenue target of $3 billion by 2025 as a result.
“It’s a huge deal … it’s a huge deal for the (hydrogen) industry,” Andy Marsh, Plug Power’s CEO, tells Forbes. Along with fuel for forklifts, Amazon may also use hydrogen to power a range of vehicles used in delivery operations, including long-haul trucks, he said. “It’s the first, much larger-scale hydrogen ecosystem for Amazon where they’re really thinking about all the applications they can use hydrogen in.”
Hydrogen is expected to become a major source of electric power, along with batteries, for both vehicle propulsion, as well as an option for stationary power generation and storage. While most industrial hydrogen that’s used for oil refining, food processing and the chemical industry is currently made by extracting the element from natural gas, that method emits carbon dioxide.
Companies including Plug, Cummins, Nikola, Nel Hydrogen and many others are shifting to a new technique using electrolyzers that can make a “green” form of the fuel from electricity–ideally from renewable sources–and water that has no climate-harming carbon emissions.
Hydrogen also gets a boost from the new Inflation Reduction Act signed into law this month by President Joe Biden, which includes a production tax credit for green hydrogen worth $3 per kilogram of carbon-free fuel.
Plug, which will benefit from that credit, has sold Amazon fuel cells for its warehouse forklifts since 2016, and estimates it’s provided more than 15,000 units to date. The company aims to expand its hydrogen fuel supply business and is adding production capacity to do that. Plug has said it will be able to make 500 tons of green hydrogen per day at facilities in North America by 2025, up from a goal of 70 tons per day by the end of this year.
By 2028, it hopes to produce 1,000 tons of hydrogen per day. Amazon said the deal is part of efforts to achieve net-zero carbon emissions across all its operations by 2040. It believes “scaling the supply and demand for green hydrogen, such as through this agreement with Plug Power, will play a key role in helping us achieve our goals,” Kara Hurst, Amazon’s vice president of sustainability at Amazon, said in a statement.
As part of the deal, Plug granted Amazon a warrant to acquire up to 16 million shares, with an exercise price of $22.98 for the first 9 million. It vests in full after Amazon spends $2.1 billion on Plug products over the seven-year term of the deal.Shares of Plug Power rose 9% to close at $30 in Nasdaq trading on Thursday.
Technology is rapidly improving, offering new innovations and revolutionary projects every year. At any given moment, scientists, engineers and some very sharp minds are out there creating the next piece of future technology that will change our lives. It can feel like scientific progress is steady but we have lived through a period of immense technological improvement in the last half century.
There are innovations happening right now that are ripped straight from the pages of science-fiction. Whether that is robots that can read minds, NFTS, bionic eyes, smartwatches that are powered by your sweat or plenty of other mind-blowing technology, there is a lot to expect from the world of future technology. Below we’ve picked out some of the biggest and most interesting ideas.
Brain reading robots
No longer a science fiction trope, the use of brain reading technology has improved hugely in recent years. One of the most interesting and practical uses we’ve seen tested so far comes from researchers at the Swiss Federal Institute of Technology Lausanne (EPFL).
Thanks to a machine-learning algorithm, a robot arm and a brain-computer interface, these researchers have managed to create a means for tetraplegic patients (those who can’t move their upper or lower body) to interact with the world.
In tests, the robot arm would perform simple tasks like moving around an obstacle. The algorithm would then interprets signals from the brain using an EEG cap and automatically determine when the arm had made a move that the brain considered incorrect, for example moving too close to the obstacle or going too fast.
Over time the algorithm can then adjust to the individuals preferences and brain signals. In the future this could lead to wheelchairs controlled by the brain or assistance machines for tetraplegic patients.
3D printed bones
3D printing is an industry promising everything from cheap house building through to affordable rugged armour, but one of the most interesting uses of the technology is the building of 3D printed bones.
The company Ossiform specialises in medical 3D printing, creating patient-specific replacements of different bones from tricalcium phosphate – a material with similar properties to human bones.
Using these 3D printed bones is surprisingly easy. A hospital can perform an MRI which is then sent to Ossiform who create a 3D model of the patient-specific implant that is needed. The surgeon accepts the design and then once it is printed, it can be used in surgery.
What is special about these 3D printed bones is that because of the use of tricalcium phosphate, the body will remodel the implants into vascularised bone. That means they will enable the full restoration of function that the bone it is replacing had. To achieve the best integration possible, the implants are of a porous structure and feature large pores and canals for cells to attach to and reform bone.
Lab-made dairy products
You’ve heard of cultured “meat” and Wagyu steaks grown cell by cell in a laboratory, but what about other animal-based foodstuffs? A growing number of biotech companies around the world are investigating lab-made dairy, including milk, ice-cream, cheese and eggs. And more than one think they’ve cracked it.
The dairy industry is not environmentally friendly, not even close. It’s responsible for 4 per cent of the world’s carbon emissions, more than air travel and shipping combined, and demand is growing for a greener splash to pour into our tea cups and cereal bowls.
Compared with meat, milk isn’t actually that difficult to create in a lab. Rather than grow it from stem cells, most researchers attempt to produce it in a process of fermentation, looking to produce the milk proteins whey and casein. Some products are already at market in the US, from companies such as Perfect Day, with ongoing work focused on reproducing the mouthfeel and nutritional benefits of regular cow’s milk.
Beyond that, researchers are working on lab-produced mozzarella that melts perfectly on top of a pizza, as well other cheeses and ice-cream.
Hydrogen planes
Carbon emissions are a huge concern when it comes to commercial flights, but there is a potential solution and it has received a lot of funding.
A £15 million UK project has unveiled plans for a hydrogen-powered plane. This project is known as Fly Zero and is being led by the Aerospace Technology Institute in conjunction with the UK government.
The project has come up with a concept for a mid-size plane powered completely by liquid hydrogen. It would have the capacity to fly roughly 279 passengers halfway around the world without stopping.
If this technology could be actualised, it could mean a zero-carbon flight with no stops between London and Western America or London to New Zealand with a single stop.
Digital “twins” that track your health
In Star Trek, where many of our ideas of future technology germinated, human beings can walk into the medbay and have their entire body digitally scanned for signs of illness and injury. Doing that in real life would, say the makers of Q Bio, improve health outcomes and alleviate the load on doctors at the same time.
The US company has built a scanner that will measure hundreds of biomarkers in around an hour, from hormone levels to the fat building up in your liver to the markers of inflammation or any number of cancers. It intends to use this data to produce a 3D digital avatar of a patient’s body – known as a digital twin – that can be tracked over time and updated with each new scan.
Q Bio CEO Jeff Kaditz hopes it will lead to a new era of preventative, personalised medicine in which the vast amounts of data collected not only help doctors prioritise which patients need to be seen most urgently, but also to develop more sophisticated ways of diagnosing illness. Read an interview with him here.
Virtual reality universes
After making its dramatic name change, the company once known as Facebook has become Meta. This marks Zuckerberg and his huge team’s move into the metaverse – an embodied internet mostly accessed through virtual and augmented reality.
As part of this move, we will start to see Meta putting more time into equipment for accessing this new world – mostly in VR. Announced back in 2021, Meta has been developing a new headset under the title ‘Project Cambria’.
Unlike the brand’s previous VR ventures like the Oculus Quest 2, this won’t be a device for the average consumer, instead looking to offer the best VR experience they can make.
The Cambria has been reported to be focused on advanced eye and face tracking (to improve accuracy of avatars and your in-game movements), a higher resolution, increased field-of-view and even trying to make the headset significantly smaller.
Between Meta, Google, Sony and plenty of other big tech companies, VR is getting lots of funding right now and will be seeing drastic improvements in the next couple of years.
Direct air capture
Through the process of photosynthesis, trees have remained one of the best ways to reduce the levels of CO2 in the atmosphere. However, new technology could perform the same role as trees, absorbing carbon dioxide at greater levels while also taking up less land.
This technology is known as Direct Air Capture (DAC). It involves taking carbon dioxide from the air and either storing the CO2 in deep geological caves under ground, or using it in combination with hydrogen to produce synthetic fuels.
While this technology has great potential, it has a lot of complications right now. There are now direct air capture facilities up and running, but the current models require a huge amount of energy to run. If the energy levels can be reduced in the future, DAC could prove to be one of the best technological advances for the future of the environment.
Green funerals
Sustainable living is becoming a priority for individuals squaring up to the realities of the climate crisis, but what about eco-friendly dying? Death tends to be a carbon-heavy process, one last stamp of our ecological footprint. The average cremation reportedly releases 400kg of carbon dioxide into the atmosphere, for example. So what’s a greener way to go?
In Washington State in the US, you could be composted instead. Bodies are laid in chambers with bark, soil, straw and other compounds that promote natural decomposition. Within 30 days, your body is reduced to soil that can be returned to a garden or woodland. Recompose, the company behind the process, claims it uses an eighth of the carbon dioxide of a cremation.
An alternative technology uses fungi. In 2019, the late actor Luke Perry was buried in a bespoke “mushroom suit” designed by a start-up called Coeio. The company claims its suit, made with mushrooms and other microorganisms that aid decomposition and neutralise toxins that are realised when a body usually decays.
Most alternative ways of disposing of our bodies after death are not based on new technology; they’re just waiting for societal acceptance to catch up. Another example is alkaline hydrolysis, which involves breaking the body down into its chemical components over a six-hour process in a pressurised chamber. It’s legal in a number of US states and uses fewer emissions compared with more traditional methods.
Artificial eyes
Bionic eyes have been a mainstay of science fiction for decades, but now real-world research is beginning to catch up with far-sighted storytellers. A raft of technologies is coming to market that restore sight to people with different kinds of vision impairment.
In January 2021, surgeons implanted the world’s first artificial cornea into a bilaterally blind, 78-year-old man. When his bandages were removed, the patient could read and recognise family members immediately. The implant also fuses naturally to human tissue without the recipient’s body rejecting it.
Likewise in 2020, Belgian scientists developed an artificial iris fitted to smart contact lenses that correct a number of vision disorders. And scientists are even working on wireless brain implants that bypass the eyes altogether.
Researchers at Montash University in Australia are working on trials for a system whereby users wear a pair of glasses fitted with a camera. This sends data directly to the implant, which sits on the surface of the brain and gives the user a rudimentary sense of sight.
Airports for drones and flying taxis
Our congested cities are in desperate need of a breather and relief may come from the air as opposed to the roads. Plans for a different kind of transport hub – one for delivery drones and electric air-taxis – are becoming a reality, with the first Urban Air Port receiving funding from the UK government.
It’s being built in Coventry. The hub will be a pilot scheme and hopefully a proof of concept for the company behind it. Powered completely off-grid by a hydrogen generator, the idea is to remove the need for as many delivery vans and personal cars on our roads, replacing them with a clean alternative in the form of a new type of small aircraft, with designs being developed by Huyundai and Airbus, amongst others.
Infrastructure is going to be important. Organisations like the Civil Aviation Authority are looking into the establishment of air corridors that might link a city centre with a local airport or distribution centre.
Energy storing bricks
Scientists have found a way to store energy in the red bricks that are used to build houses.
Researchers led by Washington University in St Louis, in Missouri, US, have developed a method that can turn the cheap and widely available building material into “smart bricks” that can store energy like a battery.
Although the research is still in the proof-of-concept stage, the scientists claim that walls made of these bricks “could store a substantial amount of energy” and can “be recharged hundreds of thousands of times within an hour”.
The researchers developed a method to convert red bricks into a type of energy storage device called a supercapacitor.
This involved putting a conducting coating, known as Pedot, onto brick samples, which then seeped through the fired bricks’ porous structure, converting them into “energy storing electrodes”.
Iron oxide, which is the red pigment in the bricks, helped with the process, the researchers said.
Sweat powered smartwatches
Engineers at the University of Glasgow have developed a new type of flexible supercapacitor, which stores energy, replacing the electrolytes found in conventional batteries with sweat.
It can be fully charged with as little as 20 microlitres of fluid and is robust enough to survive 4,000 cycles of the types of flexes and bends it might encounter in use.
The device works by coating polyester cellulose cloth in a thin layer of a polymer, which acts as the supercapacitor’s electrode.
As the cloth absorbs its wearer’s sweat, the positive and negative ions in the sweat interact with the polymer’s surface, creating an electrochemical reaction which generates energy.
“Conventional batteries are cheaper and more plentiful than ever before but they are often built using unsustainable materials which are harmful to the environment,” says Professor Ravinder Dahiya, head of the Bendable Electronics and Sensing Technologies (Best) group, based at the University of Glasgow’s James Watt School of Engineering.
“That makes them challenging to dispose of safely and potentially harmful in wearable devices, where a broken battery could spill toxic fluids on to skin.
“What we’ve been able to do for the first time is show that human sweat provides a real opportunity to do away with those toxic materials entirely, with excellent charging and discharging performance.
Self-healing ‘living concrete’
Scientists have developed what they call living concrete by using sand, gel and bacteria.
Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.
The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command”.
Living robots
Tiny hybrid robots made using stem cells from frog embryos could one day be used to swim around human bodies to specific areas requiring medicine, or to gather microplastic in the oceans.
“These are novel living machines,” said Joshua Bongard, a computer scientist and robotics expert at the University of Vermont, who co-developed the millimetre-wide bots, known as xenobots.
“They’re neither a traditional robot nor a known species of animal. It’s a new class of artefact: a living, programmable organism.”
Internet for everyone
We can’t seem to live without the internet (how else would you read sciencefocus.com?), but still only around half the world’s population is connected. There are many reasons for this, including economic and social reasons, but for some the internet just isn’t accessible because they have no connection.
Google is slowly trying to solve the problem using helium balloons to beam the internet to inaccessible areas, while Facebook has abandoned plans to do the same using drones, which means companies like Hiber are stealing a march.
They have taken a different approach by launching their own network of shoebox-sized microsatellites into low Earth orbit, which wake up a modem plugged into your computer or device when it flies over and delivers your data.
Their satellites orbit the Earth 16 times a day and are already being used by organisations like The British Antarctic Survey to provide internet access to very extreme of our planet.
Coffee power
London’s coffee industry creates over 200,000 tonnes of waste every year, so what do we do with it? Entrepreneur Arthur Kay’s big idea is to use his company, bio-bean, to turn 85 per cent of coffee waste into biofuels for heating buildings and powering transport. Already the world’s largest recycler of coffee waste, the company collects coffee grounds from large chains and restaurants as well as smaller coffee shops, and transports them to its processing plant in Cambridgeshire.
There, the grounds are dried and processed before being used to create products such as pellets or logs for biofuel, bio plastics or flavourings.
Drown forest fires in sound
Forest fires could one day be dealt with by drones that would direct loud noises at the trees below. Since sound is made up of pressure waves, it can be used to disrupt the air surrounding a fire, essentially cutting off the supply of oxygen to the fuel. At the right frequency, the fire simply dies out, as researchers at George Mason University in Virginia recently demonstrated with their sonic extinguisher. Apparently, bass frequencies work best.
The AI scientist
Cut off a flatworm’s head, and it’ll grow a new one. Cut it in half, and you’ll have two new worms. Fire some radiation at it, and it’ll repair itself. Scientists have wanted to work out the mechanisms involved for some time, but the secret has eluded them. Enter an AI coded at Tufts University, Massachusetts. By analysing and simulating countless scenarios, the computer was able to solve the mystery of the flatworm’s regeneration in just 42 hours. In the end it produced a comprehensive model of how the flatworm’s genes allow it to regenerate.
Although humans still need to feed the AI with information, the machine in this experiment was able to create a new, abstract theory independently – a huge step towards the development of a conscious computer, and potentially a landmark step in the way we carry out research.
Car batteries that charge in 10 minutes
Fast-charging of electric vehicles is seen as key to their take-up, so motorists can stop at a service station and fully charge their car in the time it takes to get a coffee and use the toilet – taking no longer than a conventional break.
But rapid charging of lithium-ion batteries can degrade the batteries, researchers at Penn State University in the US say. This is because the flow of lithium particles known as ions from one electrode to another to charge the unit and hold the energy ready for use does not happen smoothly with rapid charging at lower temperatures.
However, they have now found that if the batteries could heat to 60°C for just 10 minutes and then rapidly cool again to ambient temperatures, lithium spikes would not form and heat damage would be avoided.
The battery design they have come up with is self-heating, using a thin nickel foil which creates an electrical circuit that heats in less than 30 seconds to warm the inside of the battery. The rapid cooling that would be needed after the battery is charged would be done using the cooling system designed into the car.
Their study, published in the journal Joule, showed they could fully charge an electrical vehicle in 10 minutes.
Artificial neurons on silicon chips
Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.
“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret, from the University of Bath, who led the project.
“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.
“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.
Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.
Floating farms
The UN predicts there will be two billion more people in the world by 2050, creating a demand for 70 per cent more food. By that time, 80 per cent of us will be living in cities, and most food we eat in urban areas is brought in. So farms moored on the sea or inland lakes close to cities would certainly reduce food miles.
But how would they work? A design by architect Javier Ponce of Forward Thinking Architecture shows a 24m-tall, three-tiered structure with solar panels on top to provide energy. The middle tier grows a variety of veg over an area of 51,000m2, using not soil but nutrients in liquid. These nutrients and plant matter would drop into the bottom layer to feed fish, which are farmed in an enclosed space.
A single Smart Floating Farm measuring 350 x 200m would produce an estimated 8.1 tonnes of vegetables and 1.7 tonnes of fish a year. The units are designed to bolt together, which is handy since we’ll need a lot of them: Dubai, for instance, imports 11,000 tonnes of fruit and veg every day.
Pleistocene Park
Russian scientist Sergey Zimov hopes to recreate a 12,000-year-old environment in a wildlife park for herbivores like wild horse and bison, with extinct megafauna like mammoths replaced by modern hybrids. Zimov will study the impact of the animals on environment and climate.