Tag: medicine news

How Will The Failure Of Biogen’s Alzheimer’s Drug, Aducanumab, Impact R&D?

uncaptioned image

Photographer: Scott Eisen/Bloomberg

© 2016 Bloomberg Finance LP

The landscape of experimental Alzheimer’s disease (AD) drugs is strewn with failures, so much so that it has been referred to as “an unrelenting disaster zone”. Recognizing the greatly increasing number of patients with this disease, many biopharma companies have invested a lot of resources in attacking this problem, only to be turned away in late stage studies as happened to Merck with its BACE inhibitor, verubecestat, and Lilly with its beta-amyloid antibody, solanezumab.

Now add Biogen to the list of companies that have failed in this arena. Its drug, aducanumab, partnered with Eisai, was believed to be better in removing beta-amyloid from the brain than any agent previously tested. Many have hypothesized that beta-amyloid causes the formation of damaging clumps of debris in the brain leading to AD. Unfortunately, Biogen halted a major clinical trial with aducanumab due to a futility analysis showing that the drug doesn’t work.

This is a terrible result for Alzheimer’s patients who had hoped that this was the drug that would finally succeed in treating AD. But the demise of aducanumab is also disastrous for Biogen which had expended an enormous amount of resources into this program, likely at the expense of other opportunities. It was a risky bet and one for which Wall Street has delivered a punishing blow. Biogen’s stock dropped by nearly 30% shortly after announcing the disappointing aducanumab results.

How is Biogen going to respond? As John Carroll has reported, many industry analysts believe that there aren’t many gems in the Biogen pipeline that can make up for the loss of this potential blockbuster. In predicting Biogen’s next steps, perhaps there are some learnings from another such pipeline failure – that of Pfizer’s torcetrapib.

Torcetrapib was the first of a class of compounds known as CETP inhibitors, drugs that both raised HDL-cholesterol and lowered LDL-cholesterol. A CETP inhibitor had the potential to remodel a heart patient’s lipid profile thereby greatly reducing his risk of a heart attack or stroke. There was tremendous excitement generated in this potential breakthrough treatment, not just in Pfizer but also among cardiologists and heart patients. In fact, internal commercial analyses predicted annual sales in excess of $15 billion. However, as happened with aducanumab, on December 4th, 2006, Pfizer announced that torcetrapib failed its long-term clinical study. The drug was dead. The Wall Street reaction was swift, albeit not as dramatic as Biogen’s experience. Pfizer stock dropped 10% as a result of this news.

Internally, the Pfizer reaction was intense. Torcetrapib was supposed to be the blockbuster that would drive growth into the next decade. Its loss created an enormous hole. Pfizer CEO Jeff Kindler responded in a couple of ways. First, he decided to “right size” R&D in relation to lower expected future revenues. In effect, hundreds of millions of dollars needed to be cut from R&D. Pfizer’s R&D budget had already undergone major portfolio adjustments and reorganizations over the previous five years due to the acquisition of Warner-Lambert Parke-Davis in 2000 followed by the acquisition of Pharmacia in 2004. Meeting the new R&D budget targets weren’t going to be achieved by simple cuts; rather, major research sites had to be closed and jobs had to be eliminated. Gone were R&D sites around the world including those in France, Japan and, most significantly, the iconic laboratory in Ann Arbor, Michigan.

But budget cuts weren’t going to be enough for Pfizer to meet its desired goals. The company began assessing major M&A opportunities and in 2009 it acquired Wyeth for $68 billion leading to yet another round of reorganizations and portfolio reshuffling. The ripple effect of the torcetrapib demise was felt by the entire company and lasted for a number of years.

So, how will Biogen respond? Undoubtedly, there will be budget cuts. In addition, perhaps Biogen will look at its R&D portfolio and give a higher priority to those programs that have the potential to deliver revenues in the short term. There might also be a push to drop programs deemed to be very risky or where the proof-of-concept requires long, expensive clinical trials. Finally, it wouldn’t be surprising to see Biogen become aggressive in their M&A activities. But make no mistake. The death of an important drug like aducanumab will have both a short and a long term effect on Biogen as a company and especially on R&D.

I was the president of Pfizer Global Research and Development in 2007 where I managed more than 13,000 scientists and professionals in the United States, Europe, and Asi…

Source: How Will The Failure Of Biogen’s Alzheimer’s Drug, Aducanumab, Impact R&D?

Advertisements

Open Innovation In Japan Breaks New Ground In The Operating Room

Yoshihiro Muragaki (left) and Jun Okamoto (right) of Tokyo Women's University's Institute of Advanced Biomedical Engineering and Science

Yoshihiro Muragaki (left) and Jun Okamoto (right) of Tokyo Women’s Medical University’s Institute of Advanced Biomedical Engineering and Science pose in a version of the Smart Cyber Operating Theater (SCOT).JAPAN BRANDVOICE

Imagine undergoing surgery on a robotic bed that can automatically help perform a magnetic resonance imaging (MRI) scan while an artificial intelligence (AI) system actively supports surgeons by suggesting various procedures. It sounds like a scenario from a Hollywood movie, but it’s reality in Japan.

Doctors at the Tokyo Women’s Medical University – Waseda University Joint Institution for Advanced Biomedical Sciences (TWIns) recently performed a groundbreaking brain surgery to treat essential tremor, a neurological disorder. It was the first clinical use of the latest version of the institution’s Smart Cyber Operating Theater (SCOT). Hyper SCOT, as it’s known, brings robotics and AI into the operating theater so that patients can have better post-surgical outcomes. It’s an impressive example of the many forms of open collaboration driving innovation in Japan.

A new frontier in surgery

Walking into the Hyper SCOT operating room at Tokyo Women’s Medical University, one gets the feeling of entering Sick Bay aboard the starship Enterprise from Star Trek. Silver doors slide open to reveal a sleek white room illuminated by variable-color lights. In the center are a pair of robots: an operating bed that swivels to position a patient under a large MRI scanner nearby, and a dual-armed industrial-style robot that can support a surgeon’s arms while operating. On the wall are high-resolution images of a patient’s brain. Surgeons can gesture to zoom in or change the images’ orientation, a feature inspired by the Tom Cruise film Minority Report.

As a next-generation operating room, SCOT can reduce risks and increase benefits for patients, says Muragaki.

As a next-generation operating room, SCOT can reduce risks and increase benefits for patients, says Muragaki.JAPAN BRANDVOICE

Hyper SCOT is designed to transform surgery from an analog process, where standalone equipment is not connected, into a digital process where data are shared. It can support surgical teams by providing them with a rich stream of data from networked medical tools as well as AI-powered advice on surgical options. SCOT also aims to improve precision by helping brain surgeons accurately navigate to a tumor site. Although MRI had only been available to surgeons before an operation, Hyper SCOT would enable them to get scans during the procedure, which could dramatically improve outcomes.

“If we have many kinds of information, we need some kind of strategy desk, like Mission Control at NASA,” says SCOT project leader Yoshihiro Muragaki, a professor in Tokyo Women’s Medical University’s Institute of Advanced Biomedical Engineering and Science. “Our moonshot is to make new eyes, brains and hands for surgeons. With SCOT, we can perform precision-guided therapy.”

Okamoto demonstrates a SCOT brain imagery gestural interface inspired by the film Minority Report at Tokyo Women's Medical University.

Okamoto demonstrates a SCOT brain imagery gestural interface inspired by the film Minority Report at Tokyo Women’s Medical University. JAPAN BRANDVOICE

A neurosurgeon himself, Muragaki conceived of the SCOT project and has spearheaded it since its inception in 2000. Back then it was known as the Intelligent Operating Theater, a version now known as Classic SCOT. Supported by a grant from the Japan Agency for Medical Research and Development (AMED), the system began as an initiative to enhance interoperability among devices used in the medical theater, but the development team later added features such as multiple surgery cameras that can send imagery to remote consultants, usually senior surgeons. These advisors have a bird’s-eye view of the action as well as near-real time data streams of patients’ vital statistics. Since 2000, the technology has been used in some 1,900 cases, mostly brain surgeries. MRI has been key in detecting residual tumor tissue that escaped surgeons’ notice during operations.

“Even under a microscope, it’s very difficult to detect where brain tumor tissue ends and healthy tissue begins,” says Muragaki. “That’s why we need MRI during surgery. It’s a very powerful tool for removing tumors. But that also means we can only use MRI-compatible devices in the operating room and we must choose them carefully.”

Fruits of teamwork

With over 100 researchers, SCOT is the result of a complex collaboration between academia and the private and public sectors. Aside from the two universities in TWIns, Muragaki and colleagues are working with Hiroshima University and Shinshu University, where versions of SCOT are being evaluated in clinical settings. High-tech companies are also helping to develop SCOT, including Hitachi, Canon Medical, and Air Water. Another participant is Denso. It developed a medical-equipment middleware called OpeLiNK that is based on factory automation technology as well as ORiN, a platform created with the support of the New Energy and Industrial Technology Development Organization (NEDO), a leading Japanese state-backed research center. Orchestrating all these players was essential in creating SCOT.

Another major benefit of SCOT is the ability to obtain scans using an MRI machine (right) during surgery.

Another major benefit of SCOT is the ability to obtain scans using an MRI machine (right) during surgery. JAPAN BRANDVOICE

“If one company tried to do this alone, it would want to use its own technology and keep rivals out,” says Muragaki. “That company wouldn’t succeed in integrating all the various technologies. That’s why public institutions are vital for this kind of open innovation project. They act like the frame in a traditional sensu Japanese folding fan, keeping everything together as the project unfolds.”

The collaborations that gave birth to SCOT were recently recognized when it picked up the Minister of Health, Labour and Welfare Award as part of the first Japan Open Innovation Prize. Sponsored by the Japanese government, the accolade was set up to promote initiatives that can serve as future role models for open innovation. In Japan, companies traditionally kept R&D in-house, even in recent years. But the public and private sectors have been pushing open innovation as a vehicle for enhancing competitiveness. Collaborations between government labs, corporations and universities are now flourishing. Major telecom carrier KDDI, for instance, launched the first of a series of Open Innovation Funds in 2012, aimed at investing in IT startups in Japan and overseas.

“There’s a growing recognition that if a company categorizes itself as a camera company, for instance, it is limiting itself,” Keiichiro Koumura, an official with major real estate company Mitsui Fudosan, recently told attendees at an open innovation seminar at Mitsui Fudosan’s Base Q in Tokyo. “Because as technology changes, cameras have become smartphones. One way to address this is open innovation.”

Keiichiro Koumura of Mitsui Fudosan (center left) and Hideaki Nagano of Samurai Incubate (center right) discuss open innovation during a seminar at Base Q in Tokyo.

Keiichiro Koumura of Mitsui Fudosan (center left) and Hideaki Nagano of Samurai Incubate (center right) discuss open innovation during a seminar at Base Q in Tokyo.japan brandvoice

Looking to the future

As for SCOT, Muragaki hopes to spread the technology to other hospital facilities such as intensive care units, and apply it to other forms of surgery such as vascular operations. He also hopes to take the technology overseas.

“Most doctors are resistant to change. Before they try SCOT, surgeons don’t regard it as something that’s necessary but once they give it a go, their view changes,” says Muragaki. “After brain surgeries, we want to try the technology on bone tumors, and keep going. If you could do all surgeries with SCOT, it would decrease risks and increase benefits. That’s something we can work toward.”

To find out more about SCOT, visit the university’s website here.

For more on the Japanese Government’s innovations and technologies, please click here.

Japan is changing. The country is at the forefront of demographic change that is expected to affect countries around the world. Japan regards this not as an onus but as

Source: Open Innovation In Japan Breaks New Ground In The Operating Room

Blood Type: Microbiome and Diet — CFS Remission

One of my favorite sources for information on the microbiome is run by Dr. Peter J. D’Adamo. For many years he has advocated eating for your blood type. In this week’s issue of New Scientist. an article “Your gut bacteria may match your blood group – but we don’t know why“ The difference between many […]

via Blood Type: Microbiome and Diet — CFS Remission

HLA system in solid organ transplantation part 25 — MEDICINE FOR ALL

HLA mismatches and the production of alloantibodies HLA mismatches are not only the trigger for alloreactive T cells to destroy the transplant parenchyma, they also lead to the formation of alloreactive anti-HLA antibodies; and together they contribute to acute and chronic rejection, and the eventual immunologically-mediated transplant loss. But it is not the number […]

via HLA system in solid organ transplantation part 25 — MEDICINE FOR ALL

Human Leukocyte Antigen (HLA) part 102 — MEDICINE FOR ALL

The discovery that foetal cells are devoid of the highly polymorphic HLA class Ia molecules, except for a low expression of HLA-C, is believed to play a dominant role for the induction of tolerance to the semi-allogenic foetus. Interestingly, the foetal-derived tissue in placenta does express the loss polymorphic HLA class Ib molecules, HLA-E, […]

via Human Leukocyte Antigen (HLA) part 102 — MEDICINE FOR ALL

Why Doctors Hate Their Computers – Atul Gawande

1.jpg

On a sunny afternoon in May, 2015, I joined a dozen other surgeons at a downtown Boston office building to begin sixteen hours of mandatory computer training. We sat in three rows, each of us parked behind a desktop computer. In one month, our daily routines would come to depend upon mastery of Epic, the new medical software system on the screens in front of us. The upgrade from our home-built software would cost the hospital system where we worked, Partners HealthCare, a staggering $1.6 billion, but it aimed to keep us technologically up to date……..

Read more: https://www.newyorker.com/magazine/2018/11/12/why-doctors-hate-their-computers

 

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

Welcome To Medicare’s Open Season Your Head Is About To Explode – Howard Gleckman

1.jpg

It is Medicare open season. And, let’s face it, nobody has any idea what to do. The other night, I got a call from a friend who works in the long-term care advocacy world. She will soon turn 65 and is confronting the reality of enrolling in Medicare. She has been doing diligent research and creating detailed spreadsheets. And she is baffled. Some choice is good. So is competition. But needless complexity is something else entirely. And we know from behavioral science that, faced with too many choices, humans often make poor decisions or …do nothing………

Read more: https://www.forbes.com/sites/howardgleckman/2018/10/19/welcome-to-medicares-open-season-your-head-is-about-to-explode/#368279248edc

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

Antibiotic Resistance: Breakthrough Study Offers Solution – Catharine Paddock PhD

1.jpg

When a team at Case Western Reserve University School of Medicine in Cleveland, OH, treated mice with specific small molecules that stop bacteria from producing toxins, all the animals survived an MRSA sepsis infection, compared with less than a third of untreated mice. The finding is significant because if the same is true of humans, then it shows that it may not be necessary to use antibiotics to cure sepsis……

Read more: https://www.medicalnewstoday.com/articles/323388.php

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you