The 5 Lessons Everyone Should Learn From Einstein’s Most Famous Equation: E = mc^2

If you’ve ever heard of Albert Einstein, chances are you know at least one equation that he himself is famous for deriving: E = mc2. This simple equation details a relationship between the energy (E) of a system, its rest mass (m), and a fundamental constant that relates the two, the speed of light squared (c2). Despite the fact that this equation is one of the simplest ones you can write down, what it means is dramatic and profound.

At a fundamental level, there is an equivalence between the mass of an object and the inherent energy stored within it. Mass is only one form of energy among many, such as electrical, thermal, or chemical energy, and therefore energy can be transformed from any of these forms into mass, and vice versa. The profound implications of Einstein’s equations touch us in many ways in our day-to-day lives. Here are the five lessons everyone should learn.

This iron-nickel meteorite, examined and photographed by Opportunity, represents the first such object ever found on the Martian surface. If you were to take this object and chop it up into its individual, constituent protons, neutrons, and electrons, you would find that the whole is actually less massive than the sum of its parts.

This iron-nickel meteorite, examined and photographed by Opportunity, represents the first such object ever found on the Martian surface. If you were to take this object and chop it up into its individual, constituent protons, neutrons, and electrons, you would find that the whole is actually less massive than the sum of its parts.

NASA / JPL / Cornell

1.) Mass is not conserved. When you think about the things that change versus the things that stay the same in this world, mass is one of those quantities we typically hold constant without thinking about it too much. If you take a block of iron and chop it up into a bunch of iron atoms, you fully expect that the whole equals the sum of its parts. That’s an assumption that’s clearly true, but only if mass is conserved.

In the real world, though, according to Einstein, mass is not conserved at all. If you were to take an iron atom, containing 26 protons, 30 neutrons, and 26 electrons, and were to place it on a scale, you’d find some disturbing facts.

  • An iron atom with all of its electrons weighs slightly less than an iron nucleus and its electrons do separately,
  • An iron nucleus weighs significantly less than 26 protons and 30 neutrons do separately.
  • And if you try and fuse an iron nucleus into a heavier one, it will require you to input more energy than you get out.

Iron-56 may be the most tightly-bound nucleus, with the greatest amount of binding energy per nucleon. In order to get there, though, you have to build up element-by-element. Deuterium, the first step up from free protons, has an extremely low binding energy, and thus is easily destroyed by relatively modest-energy collisions.

Iron-56 may be the most tightly-bound nucleus, with the greatest amount of binding energy per nucleon. In order to get there, though, you have to build up element-by-element. Deuterium, the first step up from free protons, has an extremely low binding energy, and thus is easily destroyed by relatively modest-energy collisions.

Wikimedia Commons

Each one of these facts is true because mass is just another form of energy. When you create something that’s more energetically stable than the raw ingredients that it’s made from, the process of creation must release enough energy to conserve the total amount of energy in the system.

When you bind an electron to an atom or molecule, or allow those electrons to transition to the lowest-energy state, those binding transitions must give off energy, and that energy must come from somewhere: the mass of the combined ingredients. This is even more severe for nuclear transitions than it is for atomic ones, with the former class typically being about 1000 times more energetic than the latter class.

In fact, leveraging the consequences of E = mc2 is how we get the second valuable lesson out of it.

Countless scientific tests of Einstein's general theory of relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einstein's first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. We can view this orbit as Earth (or any planet) being in free-fall around the Sun, traveling in a straight-line path in its own frame of reference. All masses and all sources of energy contribute to the curvature of spacetime.

Countless scientific tests of Einstein’s general theory of relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einstein’s first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. We can view this orbit as Earth (or any planet) being in free-fall around the Sun, traveling in a straight-line path in its own frame of reference. All masses and all sources of energy contribute to the curvature of spacetime.

LIGO scientific collaboration / T. Pyle / Caltech / MIT

2.) Energy is conserved, but only if you account for changing masses. Imagine the Earth as it orbits the Sun. Our planet orbits quickly: with an average speed of around 30 km/s, the speed required to keep it in a stable, elliptical orbit at an average distance of 150,000,000 km (93 million miles) from the Sun. If you put the Earth and Sun both on a scale, independently and individually, you would find that they weighed more than the Earth-Sun system as it is right now.

When you have any attractive force that binds two objects together — whether that’s the electric force holding an electron in orbit around a nucleus, the nuclear force holding protons and neutrons together, or the gravitational force holding a planet to a star — the whole is less massive than the individual parts. And the more tightly you bind these objects together, the more energy the binding process emits, and the lower the rest mass of the end product.

Whether in an atom, molecule, or ion, the transitions of electrons from a higher energy level to a lower energy level will result in the emission of radiation at a very particular wavelength. This produces the phenomenon we see as emission lines, and is responsible for the variety of colors we see in a fireworks display. Even atomic transitions such as this must conserve energy, and that means losing mass in the correct proportion to account for the energy of the produced photon.

Whether in an atom, molecule, or ion, the transitions of electrons from a higher energy level to a lower energy level will result in the emission of radiation at a very particular wavelength. This produces the phenomenon we see as emission lines, and is responsible for the variety of colors we see in a fireworks display. Even atomic transitions such as this must conserve energy, and that means losing mass in the correct proportion to account for the energy of the produced photon.

GETTY Images