Advertisements

The 5 Lessons Everyone Should Learn From Einstein’s Most Famous Equation: E = mc^2

If you’ve ever heard of Albert Einstein, chances are you know at least one equation that he himself is famous for deriving: E = mc2. This simple equation details a relationship between the energy (E) of a system, its rest mass (m), and a fundamental constant that relates the two, the speed of light squared (c2). Despite the fact that this equation is one of the simplest ones you can write down, what it means is dramatic and profound.

At a fundamental level, there is an equivalence between the mass of an object and the inherent energy stored within it. Mass is only one form of energy among many, such as electrical, thermal, or chemical energy, and therefore energy can be transformed from any of these forms into mass, and vice versa. The profound implications of Einstein’s equations touch us in many ways in our day-to-day lives. Here are the five lessons everyone should learn.

This iron-nickel meteorite, examined and photographed by Opportunity, represents the first such object ever found on the Martian surface. If you were to take this object and chop it up into its individual, constituent protons, neutrons, and electrons, you would find that the whole is actually less massive than the sum of its parts.

This iron-nickel meteorite, examined and photographed by Opportunity, represents the first such object ever found on the Martian surface. If you were to take this object and chop it up into its individual, constituent protons, neutrons, and electrons, you would find that the whole is actually less massive than the sum of its parts.

NASA / JPL / Cornell

1.) Mass is not conserved. When you think about the things that change versus the things that stay the same in this world, mass is one of those quantities we typically hold constant without thinking about it too much. If you take a block of iron and chop it up into a bunch of iron atoms, you fully expect that the whole equals the sum of its parts. That’s an assumption that’s clearly true, but only if mass is conserved.

In the real world, though, according to Einstein, mass is not conserved at all. If you were to take an iron atom, containing 26 protons, 30 neutrons, and 26 electrons, and were to place it on a scale, you’d find some disturbing facts.

  • An iron atom with all of its electrons weighs slightly less than an iron nucleus and its electrons do separately,
  • An iron nucleus weighs significantly less than 26 protons and 30 neutrons do separately.
  • And if you try and fuse an iron nucleus into a heavier one, it will require you to input more energy than you get out.

Iron-56 may be the most tightly-bound nucleus, with the greatest amount of binding energy per nucleon. In order to get there, though, you have to build up element-by-element. Deuterium, the first step up from free protons, has an extremely low binding energy, and thus is easily destroyed by relatively modest-energy collisions.

Iron-56 may be the most tightly-bound nucleus, with the greatest amount of binding energy per nucleon. In order to get there, though, you have to build up element-by-element. Deuterium, the first step up from free protons, has an extremely low binding energy, and thus is easily destroyed by relatively modest-energy collisions.

Wikimedia Commons

Each one of these facts is true because mass is just another form of energy. When you create something that’s more energetically stable than the raw ingredients that it’s made from, the process of creation must release enough energy to conserve the total amount of energy in the system.

When you bind an electron to an atom or molecule, or allow those electrons to transition to the lowest-energy state, those binding transitions must give off energy, and that energy must come from somewhere: the mass of the combined ingredients. This is even more severe for nuclear transitions than it is for atomic ones, with the former class typically being about 1000 times more energetic than the latter class.

In fact, leveraging the consequences of E = mc2 is how we get the second valuable lesson out of it.

Countless scientific tests of Einstein's general theory of relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einstein's first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. We can view this orbit as Earth (or any planet) being in free-fall around the Sun, traveling in a straight-line path in its own frame of reference. All masses and all sources of energy contribute to the curvature of spacetime.

Countless scientific tests of Einstein’s general theory of relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einstein’s first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. We can view this orbit as Earth (or any planet) being in free-fall around the Sun, traveling in a straight-line path in its own frame of reference. All masses and all sources of energy contribute to the curvature of spacetime.

LIGO scientific collaboration / T. Pyle / Caltech / MIT

2.) Energy is conserved, but only if you account for changing masses. Imagine the Earth as it orbits the Sun. Our planet orbits quickly: with an average speed of around 30 km/s, the speed required to keep it in a stable, elliptical orbit at an average distance of 150,000,000 km (93 million miles) from the Sun. If you put the Earth and Sun both on a scale, independently and individually, you would find that they weighed more than the Earth-Sun system as it is right now.

When you have any attractive force that binds two objects together — whether that’s the electric force holding an electron in orbit around a nucleus, the nuclear force holding protons and neutrons together, or the gravitational force holding a planet to a star — the whole is less massive than the individual parts. And the more tightly you bind these objects together, the more energy the binding process emits, and the lower the rest mass of the end product.

Whether in an atom, molecule, or ion, the transitions of electrons from a higher energy level to a lower energy level will result in the emission of radiation at a very particular wavelength. This produces the phenomenon we see as emission lines, and is responsible for the variety of colors we see in a fireworks display. Even atomic transitions such as this must conserve energy, and that means losing mass in the correct proportion to account for the energy of the produced photon.

Whether in an atom, molecule, or ion, the transitions of electrons from a higher energy level to a lower energy level will result in the emission of radiation at a very particular wavelength. This produces the phenomenon we see as emission lines, and is responsible for the variety of colors we see in a fireworks display. Even atomic transitions such as this must conserve energy, and that means losing mass in the correct proportion to account for the energy of the produced photon.

GETTY Images

When you bring a free electron in from a large distance away to bind to a nucleus, it’s a lot like bringing in a free-falling comet from the outer reaches of the Solar System to bind to the Sun: unless it loses energy, it will come in, make a close approach, and slingshot back out again.

However, if there’s some other way for the system to shed energy, things can become more tightly bound. Electrons do bind to nuclei, but only if they emit photons in the process. Comets can enter stable, periodic orbits, but only if another planet steals some of their kinetic energy. And protons and neutrons can bind together in large numbers, producing a much lighter nucleus and emitting high-energy photons (and other particles) in the process. That last scenario is at the heart of perhaps the most valuable and surprising lesson of all.

A composite of 25 images of the Sun, showing solar outburst/activity over a 365 day period. Without the right amount of nuclear fusion, which is made possible through quantum mechanics, none of what we recognize as life on Earth would be possible. Over its history, approximately 0.03% of the mass of the Sun, or around the mass of Saturn, has been converted into energy via E = mc^2.

A composite of 25 images of the Sun, showing solar outburst/activity over a 365 day period. Without the right amount of nuclear fusion, which is made possible through quantum mechanics, none of what we recognize as life on Earth would be possible. Over its history, approximately 0.03% of the mass of the Sun, or around the mass of Saturn, has been converted into energy via E = mc^2.

NASA / Solar Dynamics Observatory / Atmospheric Imaging Assembly / S. Wiessinger; post-processing by E. Siegel

3.) Einstein’s E = mc2 is responsible for why the Sun (like any star) shines. Inside the core of our Sun, where the temperatures rise over a critical temperature of 4,000,000 K (up to nearly four times as large), the nuclear reactions powering our star take place. Protons are fused together under such extreme conditions that they can form a deuteron — a bound state of a proton and neutron — while emitting a positron and a neutrino to conserve energy.

Additional protons and deuterons can then bombard the newly formed particle, fusing these nuclei in a chain reaction until helium-4, with two protons and two neutrons, is created. This process occurs naturally in all main-sequence stars, and is where the Sun gets its energy from.

The proton-proton chain is responsible for producing the vast majority of the Sun's power. Fusing two He-3 nuclei into He-4 is perhaps the greatest hope for terrestrial nuclear fusion, and a clean, abundant, controllable energy source, but all of these reaction must occur in the Sun.

The proton-proton chain is responsible for producing the vast majority of the Sun’s power. Fusing two He-3 nuclei into He-4 is perhaps the greatest hope for terrestrial nuclear fusion, and a clean, abundant, controllable energy source, but all of these reaction must occur in the Sun.

Borb / Wikimedia Commons

If you were to put this end product of helium-4 on a scale and compare it to the four protons that were used up to create it, you’d find that it was about 0.7% lighter: helium-4 has only 99.3% of the mass of four protons. Even though two of these protons have converted into neutrons, the binding energy is so strong that approximately 28 MeV of energy gets emitted in the process of forming each helium-4 nucleus.

In order to produce the energy we see it produce, the Sun needs to fuse 4 × 1038 protons into helium-4 every second. The result of that fusion is that 596 million tons of helium-4 are produced with each second that passes, while 4 million tons of mass are converted into pure energy via E = mc2. Over the lifetime of the entire Sun, it’s lost approximately the mass of the planet Saturn due to the nuclear reactions in its core.

A nuclear-powered rocket engine, preparing for testing in 1967. This rocket is powered by Mass/Energy conversion, and is underpinned by the famous equation E=mc^2.

A nuclear-powered rocket engine, preparing for testing in 1967. This rocket is powered by Mass/Energy conversion, and is underpinned by the famous equation E=mc^2.

ECF (Experimental Engine Cold Flow) experimental nuclear rocket engine, NASA, 1967

4.) Converting mass into energy is the most energy-efficient process in the Universe. What could be better than 100% efficiency? Absolutely nothing; 100% is the greatest energy gain you could ever hope for out of a reaction.

Well, if you look at the equation E = mc2, it tells you that you can convert mass into pure energy, and tells you how much energy you’ll get out. For every 1 kilogram of mass that you convert, you get a whopping  9 × 1016 joules of energy out: the equivalent of 21 Megatons of TNT. Whenever we experience a radioactive decay, a fission or fusion reaction, or an annihilation event between matter and antimatter, the mass of the reactants is larger than the mass of the products; the difference is how much energy is released.

Nuclear weapon test Mike (yield 10.4 Mt) on Enewetak Atoll. The test was part of the Operation Ivy. Mike was the first hydrogen bomb ever tested. A release of this much energy corresponds to approximately 500 grams of matter being converted into pure energy: an astonishingly large explosion for such a tiny amount of mass.

Nuclear weapon test Mike (yield 10.4 Mt) on Enewetak Atoll. The test was part of the Operation Ivy. Mike was the first hydrogen bomb ever tested. A release of this much energy corresponds to approximately 500 grams of matter being converted into pure energy: an astonishingly large explosion for such a tiny amount of mass.

National Nuclear Security Administration / Nevada Site Office

In all cases, the energy that comes out — in all its combined forms — is exactly equal to the energy equivalent of the mass loss between products and reactants. The ultimate example is the case of matter-antimatter annihilation, where a particle and its antiparticle meet and produce two photons of the exact rest energy of the two particles.

Take an electron and a positron and let them annihilate, and you’ll always get two photons of exactly 511 keV of energy out. It’s no coincidence that the rest mass of electrons and positrons are each 511 keV/c2: the same value, just accounting for the conversion of mass into energy by a factor of c2. Einstein’s most famous equation teaches us that any particle-antiparticle annihilation has the potential to be the ultimate energy source: a method to convert the entirety of the mass of your fuel into pure, useful energy.

The top quark is the most massive particle known in the Standard Model, and is also the shortest-lived of all the known particles, with a mean lifetime of 5 × 10^-25 s. When we produce it in particle accelerators by having enough free energy available to create them via E = mc^2, we produce top-antitop pairs, but they do not live for long enough to form a bound state. They exist only as free quarks, and then decay.

The top quark is the most massive particle known in the Standard Model, and is also the shortest-lived of all the known particles, with a mean lifetime of 5 × 10^-25 s. When we produce it in particle accelerators by having enough free energy available to create them via E = mc^2, we produce top-antitop pairs, but they do not live for long enough to form a bound state. They exist only as free quarks, and then decay.

Raeky / Wikimedia Commons

5.) You can use energy to create matter — massive particles — out of nothing but pure energy. This is perhaps the most profound lesson of all. If you took two billiard balls and smashed one into the other, you’d always expect the results to have something in common: they’d always result in two and only two billiard balls.

With particles, though, the story is different. If you take two electrons and smash them together, you’ll get two electrons out, but with enough energy, you might also get a new matter-antimatter pair of particles out, too. In other words, you will have created two new, massive particles where none existed previously: a matter particle (electron, muon, proton, etc.) and an antimatter particle (positron, antimuon, antiproton, etc.).

Whenever two particles collide at high enough energies, they have the opportunity to produce additional particle-antiparticle pairs, or new particles as the laws of quantum physics allow. Einstein's E = mc^2 is indiscriminate this way. In the early Universe, enormous numbers of neutrinos and antineutrinos are produced this way in the first fraction-of-a-second of the Universe, but they neither decay nor are efficient at annihilating away.

Whenever two particles collide at high enough energies, they have the opportunity to produce additional particle-antiparticle pairs, or new particles as the laws of quantum physics allow. Einstein’s E = mc^2 is indiscriminate this way. In the early Universe, enormous numbers of neutrinos and antineutrinos are produced this way in the first fraction-of-a-second of the Universe, but they neither decay nor are efficient at annihilating away.

E. Siegel / Beyond The Galaxy

This is how particle accelerators successfully create the new particles they’re searching for: by providing enough energy to create those particles (and, if necessary, their antiparticle counterparts) from a rearrangement of Einstein’s most famous equation. Given enough free energy, you can create any particle(s) with mass m, so long as there’s enough energy to satisfy the requirement that there’s enough available energy to make that particle via m = E/c2. If you satisfy all the quantum rules and have enough energy to get there, you have no choice but to create new particles.

The production of matter/antimatter pairs (left) from pure energy is a completely reversible reaction (right), with matter/antimatter annihilating back to pure energy. When a photon is created and then destroyed, it experiences those events simultaneously, while being incapable of experiencing anything else at all.

The production of matter/antimatter pairs (left) from pure energy is a completely reversible reaction (right), with matter/antimatter annihilating back to pure energy. When a photon is created and then destroyed, it experiences those events simultaneously, while being incapable of experiencing anything else at all.

Dmitri Pogosyan / University of Alberta

Einstein’s E = mc2 is a triumph for the simple rules of fundamental physics. Mass isn’t a fundamental quantity, but energy is, and mass is just one possible form of energy. Mass can be converted into energy and back again, and underlies everything from nuclear power to particle accelerators to atoms to the Solar System. So long as the laws of physics are what they are, it couldn’t be any other way. As Einstein himself said:

It followed from the special theory of relativity that mass and energy are both but different manifestations of the same thing — a somewhat unfamiliar conception for the average mind.

More than 60 years after Einstein’s death, it’s long past time to bring his famous equation down to Earth. The laws of nature aren’t just for physicists; they’re for every curious person on Earth to experience, appreciate, and enjoy.

Follow me on Twitter. Check out my website or some of my other work here.

Ethan Siegel Ethan Siegel

I am a Ph.D. astrophysicist, author, and science communicator, who professes physics and astronomy at various colleges. I have won numerous awards for science writing si…

 

Starts With A Bang is dedicated to exploring the story of what we know about the Universe as well as how we know it, with a focus on physics, astronomy, and the scientific story that the Universe tells us about itself. Written by Ph.D. scientists and edited/created by astrophysicist Ethan Siegel, our goal is to share the joy, wonder and awe of scientific discovery.

 

Source: The 5 Lessons Everyone Should Learn From Einstein’s Most Famous Equation: E = mc^2

Advertisements

Share this:

Like this:

Like Loading...

Irish Teen Wins 2019 Google Science Fair For Removing Microplastics From Water

An Irish teenager just won $50,000 for his project focusing on extracting micros-plastics from water.

Google launched the Google Science Fair in 2011 where students ages 13 through 18 can submit experiments and their results in front of a panel of judges. The winner receives $50,000. The competition is also sponsored by Lego, Virgin Galactic, National Geographic and Scientific American.

Fionn Ferreira, an 18-year-old from West Cork, Ireland won the competition for his methodology to remove microplastics from water.

Microplastics are defined as having a diameter of 5nm or less and are too small for filtering or screening during wastewater treatment. Microplastics are often included in soaps, shower gels, and facial scrubs for their ability to exfoliate the skin. Microplastics can also come off clothing during normal washing.

These microplastics then make their way into waterways and are virtually impossible to remove through filtration. Small fish are known to eat microplastics and as larger fish eat smaller fish these microplastics are concentrated into larger fish species that humans consume.

Ferreira used a combination of oil and magnetite powder to create a ferrofluid in the water containing microplastics. The microplastics combined with the ferrofluid which was then extracted.

After the microplastics bound to the ferrofluid, Ferreira used a magnet to remove the solution and leave only water.

After 1,000 tests, the method was 87% effective in removing microplastics of all sorts from water. The most effective microplastic removed was that from a washing machine with the hardest to remove being polypropylene plastics.

With the confirmation of the methodology, Ferreira hopes to scale the technology to be able to implement at wastewater treatment facilities.

This would prevent the microplastics from ever reaching waterways and the ocean. While reduction in the use of microplastics is the ideal scenario, this methodology presents a new opportunity to screen for microplastics before they are consumed as food by fish.

At 18 Ferreira has an impressive array of accomplishments. He is the curator at the Schull Planetarium, speaks 3 languages fluently, won 12 previous science fair competitions, plays the trumpet in an orchestra and has a minor planet named after him by MIT.

Follow me on Twitter or LinkedIn. Check out my website.

I am a geologist passionate about sharing Earth’s intricacies with you. I received my PhD from Duke University where I studied the geology and climate of the Amazon.

 

Source: Irish Teen Wins 2019 Google Science Fair For Removing Microplastics From Water

Have Scientists Found Source Of Mysterious Hum?

It’s been blamed on everything from high-pressure gas lines to low-frequency earth tremors to submarine communications, but so far researchers have been unable to pinpoint the source of a loud, mysterious humming sound that people around the world have reported hearing.

Now science has an answer. Maybe.

Unofficially known as the Hum, the sound is a droning noise that has been heard from Southampton and Leeds in England to Bondi, Australia, and even Seattle, Wash. While people in a few regions have complained about the intermittent humming for decades, residents in other places have only recently reported hearing it. And for some, the din is unbearable.

LISTEN: The Hum heard in Terrace, British Columbia. (Story continues below.)

                                         

“It’s a kind of torture; sometimes, you just want to scream,” Leeds resident Katie Jacques told the BBC. “It’s hard to get off to sleep because I hear this throbbing sound in the background.”

The humming has also been driving residents of Southampton batty, prompting scientists there to search for a source, which has led to a new theory involving the male Midshipman fish that lets out a distinctive drone when searching for a mate, The Telegraph reported.

LISTEN: The “humming” sounds of male Midshipmen.

                                            

Yet despite widespread media coverage, there is scant evidence to back up the hypothesis. The reports appear to be based on comments made last week by Dr. Ben Wilson, a Scottish Association for Marine Science (SAMS) scientist who said only that it was possible that fish were causing the throbbing sound.

“It’s not beyond the realms of possibility,” Dr. Wilson said, according to local publication the Daily Echo. “There are certainly ‘sonic fish’ in the north Atlantic and the approaches to the English Channel.”

This theory is not without precedent. Researchers from the University of Washington’s Marine Biology program said last year that Midshipmen fish were to blame for Seattle’s humming problem. Scientists speculated that the calls of the fish in Washington State could be reverberating off of boat hulls and buildings.

But while researchers in Seattle had studied the possible link between the fish and humming, no such research has yet been conducted in England. A statement released by SAMS on Friday attempted to clarify the quotation:

Ben did suggest to the Daily Echo reporter how he might record the noises (by putting a microphone into a condom, sealing it and dropping into the water), but he hasn’t received an audio file yet. Perhaps someone would like to take up the task. Or perhaps a media organization would fly Ben and his equipment south to listen to the hum in situ. Fish might be then ruled in or out.

 

Source: Have Scientists Found Source Of Mysterious Hum?

How To Prove Einstein’s Relativity In The Palm Of Your Hand

Cosmic rays, which are ultra-high energy particles originating from all over the Universe, strike protons in the upper atmosphere and produce showers of new particles. The fast-moving charged particles also emit light due to Cherenkov radiation as they move faster than the speed of light in Earth's atmosphere, and produce secondary particles that can be detected here on Earth.

Cosmic rays, which are ultra-high energy particles originating from all over the Universe, strike protons in the upper atmosphere and produce showers of new particles. The fast-moving charged particles also emit light due to Cherenkov radiation as they move faster than the speed of light in Earth’s atmosphere, and produce secondary particles that can be detected here on Earth.

Simon Swordy (U. Chicago), NASA

When you hold out your palm and point it towards the sky, what is it that’s interacting with your hand? You might correctly surmise that there are ions, electrons and molecules all colliding with your hand, as the atmosphere is simply unavoidable here on Earth. You might also remember that photons, or particles of light, must be striking you, too.

But there’s something more striking your hand that, without relativity, simply wouldn’t be possible. Every second, approximately one muon — the unstable, heavy cousin of the electron — passes through your outstretched palm. These muons are made in the upper atmosphere, created by cosmic rays. With a mean lifetime of 2.2 microseconds, you might think the ~100+ km journey to your hand would be impossible. Yet relativity makes it so, and the palm of your hand can prove it. Here’s how.

While cosmic ray showers are common from high-energy particles, it's mostly the muons which make it down to Earth's surface, where they are detectable with the right setup.

While cosmic ray showers are common from high-energy particles, it’s mostly the muons which make it down to Earth’s surface, where they are detectable with the right setup.

Alberto Izquierdo; courtesy of Francisco Barradas Solas

Individual, subatomic particles are almost always invisible to human eyes, as the wavelengths of light we can see are unaffected by particles passing through our bodies. But if you create a pure vapor made out of 100% alcohol, a charged particle passing through it will leave a trail that can be visually detected by even as primitive an instrument as the human eye.

As a charged particle moves through the alcohol vapor, it ionizes a path of alcohol particles, which act as centers for the condensation of alcohol droplets. The trail that results is both long enough and long-lasting enough that human eyes can see it, and the speed and curvature of the trail (if you apply a magnetic field) can even tell you what type of particle it was.

This principle was first applied in particle physics in the form of a cloud chamber.

A completed cloud chamber can be built in a day out of readily-available materials and for less than $100. You can use it to prove the validity of Einstein's relativity, if you know what you're doing!

A completed cloud chamber can be built in a day out of readily-available materials and for less than $100. You can use it to prove the validity of Einstein’s relativity, if you know what you’re doing!

Instructables user ExperiencingPhysics

Today, a cloud chamber can be built, by anyone with commonly available parts, for a day’s worth of labor and less than $100 in parts. (I’ve published a guide here.) If you put the mantle from a smoke detector inside the cloud chamber, you’ll see particles emanate from it in all directions and leave tracks in your cloud chamber.

That’s because a smoke detector’s mantle contains radioactive elements such as Americium, which decays by emitting α-particles. In physics, α-particles are made up of two protons and two neutrons: they’re the same as a helium nucleus. With the low energies of the decay and the high mass of the α-particles, these particles make slow, curved tracks and can even be occasionally seen bouncing off of the cloud chamber’s bottom. It’s an easy test to see if your cloud chamber is working properly.

For an extra bonus of radioactive tracks, add the mantle of a smoke detector to the bottom of your cloud chamber, and watch the slow-moving particles emanating outward from it. Some will even bounce off the bottom!

For an extra bonus of radioactive tracks, add the mantle of a smoke detector to the bottom of your cloud chamber, and watch the slow-moving particles emanating outward from it. Some will even bounce off the bottom!

If you build a cloud chamber like this, however, those α-particle tracks aren’t the only things you’ll see. In fact, even if you leave the chamber completely evacuated (i.e., you don’t put a source of any type inside or nearby), you’ll still see tracks: they’ll be mostly vertical and appear to be perfectly straight.

This is because of cosmic rays: high-energy particles that strike the top of Earth’s atmosphere, producing cascading particle showers. Most of the cosmic rays are made up of protons, but move with a wide variety of speeds and energies. The higher-energy particles will collide with particles in the upper atmosphere, producing particles like protons, electrons, and photons, but also unstable, short-lived particles like pions. These particle showers are a hallmark of fixed-target particle physics experiments, and they occur naturally from cosmic rays, too.

Although there are four major types of particles that can be detected in a cloud chamber, the long and straight tracks are the cosmic ray muons, which can be used to prove that special relativity is correct.

Although there are four major types of particles that can be detected in a cloud chamber, the long and straight tracks are the cosmic ray muons, which can be used to prove that special relativity is correct.

Wikimedia Commons user Cloudylabs

The thing about pions is that they come in three varieties: positively charged, neutral, and negatively charged. When you make a neutral pion, it just decays into two photons on very short (~10-16 s) timescales. But charged pions live longer (for around 10-8 s) and when they decay, they primarily decay into muons, which are point particles like electrons but have 206 times the mass.

Muons also are unstable, but they’re the longest-lived unstable fundamental particle as far as we know. Owing to their relatively small mass, they live for an astoundingly long 2.2 microseconds, on average. If you were to ask how far a muon could travel once created, you might think to multiply its lifetime (2.2 microseconds) by the speed of light (300,000 km/s), getting an answer of 660 meters. But that leads to a puzzle.

Cosmic ray shower and some of the possible interactions. Note that if a charged pion (left) strikes a nucleus before it decays, it produces a shower, but if it decays first (right), it produces a muon that will reach the surface.

Cosmic ray shower and some of the possible interactions. Note that if a charged pion (left) strikes a nucleus before it decays, it produces a shower, but if it decays first (right), it produces a muon that will reach the surface.

Konrad Bernlöhr of the Max-Planck-Institute at Heidelberg

I told you earlier that if you hold out the palm of your hand, roughly one muon per second passes through it. But if they can only live for 2.2 microseconds, they’re limited by the speed of light, and they’re created in the upper atmosphere (around 100 km up), how is it possible for those muons to reach us?

You might start to think of excuses. You might imagine that some of the cosmic rays have enough energy to continue cascading and producing particle showers during their entire journey to the ground, but that’s not the story the muons tell when we measure their energies: the lowest ones are still created some 30 km up. You might imagine that the 2.2 microseconds is just an average, and maybe the rare muons that live for 3 or 4 times that long will make it down. But when you do the math, only 1-in-1050 muons would survive down to Earth; in reality, nearly 100% of the created muons arrive.

A light-clock, formed by a photon bouncing between two mirrors, will define time for any observer. Although the two observers may not agree with one another on how much time is passing, they will agree on the laws of physics and on the constants of the Universe, such as the speed of light. When relativity is applied correctly, their measurements will be found to be equivalent to one another, as the correct relativistic transformation will allow one observer to understand the observations of the other.

A light-clock, formed by a photon bouncing between two mirrors, will define time for any observer. Although the two observers may not agree with one another on how much time is passing, they will agree on the laws of physics and on the constants of the Universe, such as the speed of light. When relativity is applied correctly, their measurements will be found to be equivalent to one another, as the correct relativistic transformation will allow one observer to understand the observations of the other.

John D. Norton

How can we explain such a discrepancy? Sure, the muons are moving close to the speed of light, but we’re observing them from a reference frame where we’re stationary. We can measure the distance the muons travel, we can measure the time they live for, and even if we give them the benefit of the doubt and say that they’re moving at (rather than near) the speed of light, they shouldn’t even make it for 1 kilometer before decaying.

But this misses one of the key points of relativity! Unstable particles don’t experience time as you, an external observer, measures it. They experience time according to their own onboard clocks, which will run slower the closer they move to the speed of light. Time dilates for them, which means that we will observe them living longer than 2.2 microseconds from our reference frame. The faster they move, the farther we’ll see them travel.

One revolutionary aspect of relativistic motion, put forth by Einstein but previously built up by Lorentz, Fitzgerald, and others, that rapidly moving objects appeared to contract in space and dilate in time. The faster you move relative to someone at rest, the greater your lengths appear to be contracted, while the more time appears to dilate for the outside world. This picture, of relativistic mechanics, replaced the old Newtonian view of classical mechanics, and can explain the lifetime of a cosmic ray muon.

One revolutionary aspect of relativistic motion, put forth by Einstein but previously built up by Lorentz, Fitzgerald, and others, that rapidly moving objects appeared to contract in space and dilate in time. The faster you move relative to someone at rest, the greater your lengths appear to be contracted, while the more time appears to dilate for the outside world. This picture, of relativistic mechanics, replaced the old Newtonian view of classical mechanics, and can explain the lifetime of a cosmic ray muon.

Curt Renshaw

How does this work out for the muon? From its reference frame, time passes normally, so it will only live for 2.2 microseconds according to its own clocks. But it will experience reality as though it hurtles towards Earth’s surface extremely close to the speed of light, causing lengths to contract in its direction of motion.

If a muon moves at 99.999% the speed of light, every 660 meters outside of its reference frame will appear as though it’s just 3 meters in length. A journey of 100 km down to the surface would appear to be a journey of 450 meters in the muon’s reference frame, taking up just 1.5 microseconds of time according to the muon’s clock.

At high enough energies and velocities, relativity becomes important, allowing many more muons to survive than would without the effects of time dilation.

At high enough energies and velocities, relativity becomes important, allowing many more muons to survive than would without the effects of time dilation.

Frisch/Smith, Am. J. of Phys. 31 (5): 342–355 (1963) / Wikimedia Commons user D.H

This teaches us how to reconcile things for the muon: from our reference frame here on Earth, we see the muon travel 100 km in a timespan of about 4.5 milliseconds. This is just fine, because time is dilated for the muon and lengths are contracted for it: it sees itself as traveling 450 meters in 1.5 microseconds, and hence it can remain alive all the way down to its destination of Earth’s surface.

Without the laws of relativity, this cannot be explained! But at high velocities, which correspond to high particle energies, the effects of time dilation and length contraction enable not just a few but most of the created muons to survive. This is why, even all the way down here at the surface of the Earth, one muon per second still appears to pass through your upturned, outstretched hand.

The V-shaped track in the center of the image arises from a muon decaying to an electron and two neutrinos. The high-energy track with a kink in it is evidence of a mid-air particle decay. By colliding positrons and electrons at a specific, tunable energy, muon-antimuon pairs could be produced at will. The necessary energy for making a muon/antimuon pair from high-energy positrons colliding with electrons at rest is almost identical to the energy from electron/positron collisions necessary to create a Z-boson.

The V-shaped track in the center of the image arises from a muon decaying to an electron and two neutrinos. The high-energy track with a kink in it is evidence of a mid-air particle decay. By colliding positrons and electrons at a specific, tunable energy, muon-antimuon pairs could be produced at will. The necessary energy for making a muon/antimuon pair from high-energy positrons colliding with electrons at rest is almost identical to the energy from electron/positron collisions necessary to create a Z-boson.

The Scottish Science & Technology Roadshow

If you ever doubted relativity, it’s hard to fault you: the theory itself seems so counterintuitive, and its effects are thoroughly outside the realm of our everyday experience. But there is an experimental test you can perform right at home, cheaply and with just a single day’s efforts, that allow you see the effects for yourself.

You can build a cloud chamber, and if you do, you will see those muons. If you installed a magnetic field, you’d see those muon tracks curve according to their charge-to-mass ratio: you’d immediately know they weren’t electrons. On rare occasion, you’d even see a muon decaying in mid-air. And, finally, if you measured their energies, you’d find that they were moving ultra-relativistically, at 99.999%+ the speed of light. If not for relativity, you wouldn’t see a single muon at all.

Time dilation and length contraction are real, and the fact that muons survive, from cosmic ray showers all the way down to Earth, prove it beyond a shadow of a doubt.

Follow me on Twitter. Check out my website or some of my other work here.

Ethan Siegel Ethan Siegel Contributor

I am a Ph.D. astrophysicist, author, and science communicator, who professes physics and astronomy at various colleges.

Source: How To Prove Einstein’s Relativity In The Palm Of Your Hand

Like this:

Everyone Missed An Apollo 11 Mistake, And It Almost Killed The Astronauts Returning To Earth

Neil Armstrong and Buzz Aldrin raise the American Flag on the Moon, with the shadow of the Lunar Module (where the camera is mounted) seen in nearby. The astronauts might not have successfully returned to Earth, however, if the procedure used to jettison the fuel from the Service Module had let it come into contact with the Command Module. (NASA/ullstein bild via Getty Images)

Even from our perspective in 2019, 50 years later, humanity’s achievements from July, 1969, still mark the pinnacle of crewed spaceflight. For the first time in history, human beings successfully landed on the surface of another world. After a 380,000 km journey, the crew set foot on the Moon, walked upon it, installed scientific instruments, took samples, and then departed for Earth.

Three days after leaving the Moon, on July 24, 1969, they splashed down in Earth’s oceans, successfully completing their return trip. But during Apollo 11’s return to Earth, a serious anomaly occurred: one that went undetected until after the crew returned to Earth. Uncovered by Nancy Atkinson in her new book, Eight Years to the Moon, this anomaly could have led to a disastrous ending for astronauts Armstrong, Aldrin and Collins. Here’s the story you’ve never heard.

This NASA image was taken on July 16, 1969, and shows some of the thousands of people who camped out on beaches and roads adjacent to the Kennedy Space Center to watch the Apollo 11 mission Liftoff aboard the Saturn V rocket. Four days later, humanity would take our first footsteps on another world. Four days after that, the astronauts successfully returned to Earth, but that was not a foregone conclusion. (NASA / AFP / Getty Images)

This NASA image was taken on July 16, 1969, and shows some of the thousands of people who camped out on beaches and roads adjacent to the Kennedy Space Center to watch the Apollo 11 mission Liftoff aboard the Saturn V rocket. Four days later, humanity would take our first footsteps on another world. Four days after that, the astronauts successfully returned to Earth, but that was not a foregone conclusion. (NASA / AFP / Getty Images)

According to our records, the flight plan of Apollo 11 went off without a hitch. Chosen as the mission to fulfill then-President Kennedy’s goal of performing a crewed lunar landing and successful return to Earth, the timeline appeared to go exactly as planned.

  • On July 16, 1969, the Saturn V rocket responsible for propelling Apollo 11 to the Moon successfully launched from Cape Kennedy. (Modern-day Cape Canaveral.)
  • Only July 17, the first thrust maneuver using Apollo’s Service Propulsion System (SPS) was made, course-correcting for the journey to the Moon. The launch and this one corrective burn were so successful that the other three scheduled SPS maneuvers were not even needed.
  • Only July 19, Apollo 11 reached the Moon, flying behind it and entering lunar orbit after a series of thrust maneuvers from SPS.
  • On July 20, the Eagle (lunar module) undocked from the Columbia (command and service module), made a powered descent, and landed on the Moon’s surface.
Astronaut Edwin E. "Buzz" Aldrin Jr., Lunar Module Pilot, stands near a scientific experiment on the lunar surface. Humanity's first landing on the Moon occurred July 20, 1969, as the Lunar Module code-named "Eagle" touched down gently on the Sea of Tranquility on the east side of the Moon. The Lunar Module, completely intact before the ascent stage is launched, can be seen in full beside the planted American flag. (NASA/Newsmakers)

Astronaut Edwin E. “Buzz” Aldrin Jr., Lunar Module Pilot, stands near a scientific experiment on the lunar surface. Humanity’s first landing on the Moon occurred July 20, 1969, as the Lunar Module code-named “Eagle” touched down gently on the Sea of Tranquility on the east side of the Moon. The Lunar Module, completely intact before the ascent stage is launched, can be seen in full beside the planted American flag. (NASA/Newsmakers)

Getty

  • After 4 hours setting up, astronauts Armstrong and Aldrin left the lunar module to explore the lunar surface, performing an extra-vehicular activity (EVA) for a total of 2.5 hours, deploying scientific instruments, collecting samples for return, and famously planting an American flag.
  • On July 21, after just 21 hours and 36 minutes on the Moon, the ascent engine fired, bringing the Eagle back to dock with Columbia, and returning astronauts Aldrin and Armstrong to the Command and Service Module with astronaut Collins.
  • On July 21, the SPS thrusters fired, returning the Command and Service Module to Earth, with the lone mid-course correction coming on July 22.
  • And on July 24, re-entry procedures were initiated, returning the Apollo 11 crew to a safe splashdown in the Pacific Ocean.
This artist's concept shows the Command Module undergoing re-entry in 5000 °F heat. The Apollo Command/Service Module was used for the Apollo program which landed astronauts on the Moon between 1969 and 1972. An ablative heat shield on the outside of the Command Module protected the capsule from the heat of re-entry (from space into Earth's atmosphere), which is sufficient to melt most metals. During re-entry, the heat shield charred and melted away, absorbing and carrying away the intense heat in the process. (Heritage Space/Heritage Images/Getty Images)

This artist’s concept shows the Command Module undergoing re-entry in 5000 °F heat. The Apollo Command/Service Module was used for the Apollo program which landed astronauts on the Moon between 1969 and 1972. An ablative heat shield on the outside of the Command Module protected the capsule from the heat of re-entry (from space into Earth’s atmosphere), which is sufficient to melt most metals. During re-entry, the heat shield charred and melted away, absorbing and carrying away the intense heat in the process. (Heritage Space/Heritage Images/Getty Images)

Getty

It all sounds so simple and straightforward, which obscures the real truth: for every one of these steps, there were hundreds (or more) potential points of failure that everyone involved needed to guard against. That final step alone, which returned the astronauts from their presence around to Moon — after journeying back to Earth — was one of the most crucial. If it failed, it would lead to certain death, similar to the demise of the Soviet cosmonaut Vladimir Komarov.

Successful re-entries after a journey to the Moon had already taken place aboard NASA’s Apollo 8 and Apollo 10 missions, and Apollo 11 was expected to follow the same procedures. At the danger of becoming complacent, this step, in many ways, already seemed like old hat to many of those staffing the Apollo 11 mission.

This schematic drawing shows the stages in the return from a lunar landing mission. The Lunar Module takes off from the Moon and docks with the Command and Service Module. The Command Module then separates from the Service Module, which jettisons its fuel and accelerates away. The Command Module then re-enters the Earth's atmosphere, before finally parachuting down to land in the ocean. (SSPL/Getty Images)

This schematic drawing shows the stages in the return from a lunar landing mission. The Lunar Module takes off from the Moon and docks with the Command and Service Module. The Command Module then separates from the Service Module, which jettisons its fuel and accelerates away. The Command Module then re-enters the Earth’s atmosphere, before finally parachuting down to land in the ocean. (SSPL/Getty Images)

Getty

Re-entry, in principle, ought to be straightforward for the astronauts returning from the Moon. The Command and Service Modules first needed to separate, with the astronauts inside the Command Module and the Service Module being jettisoned. Once safely away, the Command Module would re-orient itself so that the heat shield was in the forward-facing position, prepared to absorb the brunt of the impact of re-entering Earth’s atmosphere while protecting the astronauts inside.

At the proper moment, when the atmospheric density was great enough and the external temperatures and speeds were low enough, the parachute would deploy, leading to a gentle splashdown in the Pacific Ocean approximately 5 minutes later, where the astronauts could then be safely recovered.

Although there are no known photographs of the Apollo 11 Command Module descending towards splashdown in the Pacific Ocean, all of the crewed Apollo missions ended in similar fashion: with the Command Module's heat shield protecting the astronauts during the early stages of re-entry, and a parachute deploying to slow the final stages of descent to a manageable speed. Shown here, Apollo 14 is about to splash down in the oceans, similar to the prior missions such as Apollo 11. (SSPL/Getty Images)

Although there are no known photographs of the Apollo 11 Command Module descending towards splashdown in the Pacific Ocean, all of the crewed Apollo missions ended in similar fashion: with the Command Module’s heat shield protecting the astronauts during the early stages of re-entry, and a parachute deploying to slow the final stages of descent to a manageable speed. Shown here, Apollo 14 is about to splash down in the oceans, similar to the prior missions such as Apollo 11. (SSPL/Getty Images)

Getty

It sounds so routine. But of the innumerable things that could go wrong, one of them was entirely unexpected: the possibility that the Service Module, scheduled to break apart and safely burn up in Earth’s atmosphere, could accidentally have a piece of its debris collide with the Command Module, ruining re-entry and killing the returning astronauts on board.

The plan to avoid it was simple: the Service Module, post-separation, would perform a series of thrust maneuvers to take it safely away from the re-entry path of the Command Module. By shifting the Service Module to a significantly different trajectory, it wouldn’t even re-enter at the same time as the Command Module, but would skip off the atmosphere this time. The re-entry of the Service Module should have only come much later, after performing another orbit (or set of orbits) around Earth.

Both the Command Module and the Service Module from Apollo 11 followed the same re-entry trajectory, which could have proved fatal to the astronauts aboard the Command Module if a collision of any type had occurred. It was only through luck that such a catastrophe was avoided.

Both the Command Module and the Service Module from Apollo 11 followed the same re-entry trajectory, which could have proved fatal to the astronauts aboard the Command Module if a collision of any type had occurred. It was only through luck that such a catastrophe was avoided.

NASA

But that didn’t happen at all. To quote from Nancy Atkinson’s book, pilot Frank A. Brown, flying about 450 miles (725 km) away from the re-entry point, reported the following:

I see the two of them, one above the other. One is the Command Module; the other is the Service Module. . . . I see the trail behind them — what a spectacle! You can see the bits flying off. Notice that the top one is almost unchanged while the bottom one is shattering into pieces. That is the disintegrating Service Module.

Fortunately for everyone, none of the debris resulting from the Service Module’s re-entry impacted the Command Module, and the astronauts all arrived safely back on Earth.

The crew of Apollo 11 — Neil Armstrong, Michael Collins, and Buzz Aldrin — in the Mobile Quarantine Facility after returning from the surface of the Moon. The U.S.S. Hornet successfully recovered the astronauts from the Command Module after splashdown, where the crew was greeted by President Nixon, among others. (MPI/Getty Images)

The crew of Apollo 11 — Neil Armstrong, Michael Collins, and Buzz Aldrin — in the Mobile Quarantine Facility after returning from the surface of the Moon. The U.S.S. Hornet successfully recovered the astronauts from the Command Module after splashdown, where the crew was greeted by President Nixon, among others. (MPI/Getty Images)

Getty

How could this have occurred?

There was a fault in how the Service Module was configured to jettison its remaining fuel: a problem that was later discovered to have occurred aboard the prior Apollo 8 and Apollo 10 missions as well. Instead of a series of thrusters firing to move the Service Module away from the Command Module, shifting it to a different trajectory and eliminating the possibility of a collision, the way the thrusters actually fired put the entire mission at risk.

The problem was that there were two types of thrusters on board the Service Module: the Minus X RCS jets and the RCS roll jets. And while the roll jets fired in bursts in an attempt to stabilize the Service Module, the Minus X jets fired continuously.

The Reaction Control System, visible towards the center-left of the image, consists of two types of thrusters that control both acceleration and orientation. With the original flaw, the thrusters fired in a pattern that put the Command Module at risk. Had those two modules collided, the astronauts on board would have had a failed re-entry, killing all three passengers.

The Reaction Control System, visible towards the center-left of the image, consists of two types of thrusters that control both acceleration and orientation. With the original flaw, the thrusters fired in a pattern that put the Command Module at risk. Had those two modules collided, the astronauts on board would have had a failed re-entry, killing all three passengers.

NASA

In the aftermath of Apollo 11, investigators determined that the proper procedure for avoiding contact would be to properly time the firing of both the roll jets and the Minus X jets, which would lead to a 0% probability of contact between the two spacecrafts. This might seem like an extremely small point — to have the Minus X jets cut out after a certain amount of time firing as well as the roll jets — but you must remember that the spacecraft is full of moving parts.

If, for example, the fuel were to slosh around after the Service Module and the Command Module separated, that could lead to a certain window of uncertainty in the resultant trajectory. Without implementing the correct procedure for firing the various jets implemented, the safe return of the Apollo 11 astronauts would have to come down to luck.

This NASA picture taken on April 17, 1970, shows the Service Module (codenamed "Odyssey") from the Apollo 13 mission. The Service Module was jettisoned from the Command Module early, and the damage is clearly visible on the right side. This was to be the third crewed Apollo mission to land on the Moon, but was aborted due to the onboard explosion. Thankfully, the flaw in the jettison controller had been fixed, and the Service Module posed no risk to the astronaut-carrying Command Module from Apollo 13 onwards. (AFP/Getty Images)

This NASA picture taken on April 17, 1970, shows the Service Module (codenamed “Odyssey”) from the Apollo 13 mission. The Service Module was jettisoned from the Command Module early, and the damage is clearly visible on the right side. This was to be the third crewed Apollo mission to land on the Moon, but was aborted due to the onboard explosion. Thankfully, the flaw in the jettison controller had been fixed, and the Service Module posed no risk to the astronaut-carrying Command Module from Apollo 13 onwards. (AFP/Getty Images)

Getty

Fortunately for everyone, they did get lucky. During the technical debriefing in the aftermath of Apollo 11, the fly-by of the Service Module past the Command Module was noted by Buzz Aldrin, who also reported on the Service Module’s rotation, which was far in excess of the design parameters. Engineer Gary Johnson hand-drew schematics for rewiring the Apollo Service Module’s jettison controller, and the changes were made just after the next flight: Apollo 12.

Those first four crewed trips to the Moon — Apollo 8, 10, 11 and 12 — could have all ended in potential disaster. If the Service Module had collided with the Command Module, a re-entry disaster similar to Space Shuttle Columbia could have occurred just as the USA was taking the conclusive steps of the Space Race.

View of the Apollo 11 capsule floating on the water after splashing down upon its return to Earth on July 24, 1969. If the Command Module and the Service Module had collided or interacted in any sort of substantial, unplanned-for way, the return of the first moonwalkers could have been as disastrous as the Space Shuttle Columbia's final flight. (CBS Photo Archive/Getty Images)

View of the Apollo 11 capsule floating on the water after splashing down upon its return to Earth on July 24, 1969. If the Command Module and the Service Module had collided or interacted in any sort of substantial, unplanned-for way, the return of the first moonwalkers could have been as disastrous as the Space Shuttle Columbia’s final flight. (CBS Photo Archive/Getty Images)

Getty

Atkinson’s book, Eight Years to the Moon, comes highly recommended by me if you’re interested in the behind-the-scenes details and rarely-told stories from the Apollo era. Inside, you’ll find many additional details about this event, including interview snippets with Gary Johnson himself.

If Armstrong and Aldrin — the first two moonwalkers — were to perish before returning to Earth, the United States already had a presidential address drafted for such a purpose. We may chalk it up to good fortune that the following words never needed to be spoken:

In their exploration, they stirred the people of the world to feel as one; in their sacrifice, they bind more tightly the brotherhood of man.

In ancient days, men looked at the stars and saw their heroes in the constellations. In modern times, we do much the same, but our heroes are epic men of flesh and blood.

Others will follow, and surely find their way home. Man’s search will not be denied. But these men were the first, and they will remain the foremost in our hearts.

Follow me on Twitter. Check out my website or some of my other work here.

Ethan Siegel Ethan Siegel Contributor

I am a Ph.D. astrophysicist, author, and science communicator, who professes physics and astronomy at various colleges.

 

Source: Everyone Missed An Apollo 11 Mistake, And It Almost Killed The Astronauts Returning To Earth

Open Innovation In Japan Breaks New Ground In The Operating Room

Yoshihiro Muragaki (left) and Jun Okamoto (right) of Tokyo Women's University's Institute of Advanced Biomedical Engineering and Science

Yoshihiro Muragaki (left) and Jun Okamoto (right) of Tokyo Women’s Medical University’s Institute of Advanced Biomedical Engineering and Science pose in a version of the Smart Cyber Operating Theater (SCOT).JAPAN BRANDVOICE

Imagine undergoing surgery on a robotic bed that can automatically help perform a magnetic resonance imaging (MRI) scan while an artificial intelligence (AI) system actively supports surgeons by suggesting various procedures. It sounds like a scenario from a Hollywood movie, but it’s reality in Japan.

Doctors at the Tokyo Women’s Medical University – Waseda University Joint Institution for Advanced Biomedical Sciences (TWIns) recently performed a groundbreaking brain surgery to treat essential tremor, a neurological disorder. It was the first clinical use of the latest version of the institution’s Smart Cyber Operating Theater (SCOT). Hyper SCOT, as it’s known, brings robotics and AI into the operating theater so that patients can have better post-surgical outcomes. It’s an impressive example of the many forms of open collaboration driving innovation in Japan.

A new frontier in surgery

Walking into the Hyper SCOT operating room at Tokyo Women’s Medical University, one gets the feeling of entering Sick Bay aboard the starship Enterprise from Star Trek. Silver doors slide open to reveal a sleek white room illuminated by variable-color lights. In the center are a pair of robots: an operating bed that swivels to position a patient under a large MRI scanner nearby, and a dual-armed industrial-style robot that can support a surgeon’s arms while operating. On the wall are high-resolution images of a patient’s brain. Surgeons can gesture to zoom in or change the images’ orientation, a feature inspired by the Tom Cruise film Minority Report.

As a next-generation operating room, SCOT can reduce risks and increase benefits for patients, says Muragaki.

As a next-generation operating room, SCOT can reduce risks and increase benefits for patients, says Muragaki.JAPAN BRANDVOICE

Hyper SCOT is designed to transform surgery from an analog process, where standalone equipment is not connected, into a digital process where data are shared. It can support surgical teams by providing them with a rich stream of data from networked medical tools as well as AI-powered advice on surgical options. SCOT also aims to improve precision by helping brain surgeons accurately navigate to a tumor site. Although MRI had only been available to surgeons before an operation, Hyper SCOT would enable them to get scans during the procedure, which could dramatically improve outcomes.

“If we have many kinds of information, we need some kind of strategy desk, like Mission Control at NASA,” says SCOT project leader Yoshihiro Muragaki, a professor in Tokyo Women’s Medical University’s Institute of Advanced Biomedical Engineering and Science. “Our moonshot is to make new eyes, brains and hands for surgeons. With SCOT, we can perform precision-guided therapy.”

Okamoto demonstrates a SCOT brain imagery gestural interface inspired by the film Minority Report at Tokyo Women's Medical University.

Okamoto demonstrates a SCOT brain imagery gestural interface inspired by the film Minority Report at Tokyo Women’s Medical University. JAPAN BRANDVOICE

A neurosurgeon himself, Muragaki conceived of the SCOT project and has spearheaded it since its inception in 2000. Back then it was known as the Intelligent Operating Theater, a version now known as Classic SCOT. Supported by a grant from the Japan Agency for Medical Research and Development (AMED), the system began as an initiative to enhance interoperability among devices used in the medical theater, but the development team later added features such as multiple surgery cameras that can send imagery to remote consultants, usually senior surgeons. These advisors have a bird’s-eye view of the action as well as near-real time data streams of patients’ vital statistics. Since 2000, the technology has been used in some 1,900 cases, mostly brain surgeries. MRI has been key in detecting residual tumor tissue that escaped surgeons’ notice during operations.

“Even under a microscope, it’s very difficult to detect where brain tumor tissue ends and healthy tissue begins,” says Muragaki. “That’s why we need MRI during surgery. It’s a very powerful tool for removing tumors. But that also means we can only use MRI-compatible devices in the operating room and we must choose them carefully.”

Fruits of teamwork

With over 100 researchers, SCOT is the result of a complex collaboration between academia and the private and public sectors. Aside from the two universities in TWIns, Muragaki and colleagues are working with Hiroshima University and Shinshu University, where versions of SCOT are being evaluated in clinical settings. High-tech companies are also helping to develop SCOT, including Hitachi, Canon Medical, and Air Water. Another participant is Denso. It developed a medical-equipment middleware called OpeLiNK that is based on factory automation technology as well as ORiN, a platform created with the support of the New Energy and Industrial Technology Development Organization (NEDO), a leading Japanese state-backed research center. Orchestrating all these players was essential in creating SCOT.

Another major benefit of SCOT is the ability to obtain scans using an MRI machine (right) during surgery.

Another major benefit of SCOT is the ability to obtain scans using an MRI machine (right) during surgery. JAPAN BRANDVOICE

“If one company tried to do this alone, it would want to use its own technology and keep rivals out,” says Muragaki. “That company wouldn’t succeed in integrating all the various technologies. That’s why public institutions are vital for this kind of open innovation project. They act like the frame in a traditional sensu Japanese folding fan, keeping everything together as the project unfolds.”

The collaborations that gave birth to SCOT were recently recognized when it picked up the Minister of Health, Labour and Welfare Award as part of the first Japan Open Innovation Prize. Sponsored by the Japanese government, the accolade was set up to promote initiatives that can serve as future role models for open innovation. In Japan, companies traditionally kept R&D in-house, even in recent years. But the public and private sectors have been pushing open innovation as a vehicle for enhancing competitiveness. Collaborations between government labs, corporations and universities are now flourishing. Major telecom carrier KDDI, for instance, launched the first of a series of Open Innovation Funds in 2012, aimed at investing in IT startups in Japan and overseas.

“There’s a growing recognition that if a company categorizes itself as a camera company, for instance, it is limiting itself,” Keiichiro Koumura, an official with major real estate company Mitsui Fudosan, recently told attendees at an open innovation seminar at Mitsui Fudosan’s Base Q in Tokyo. “Because as technology changes, cameras have become smartphones. One way to address this is open innovation.”

Keiichiro Koumura of Mitsui Fudosan (center left) and Hideaki Nagano of Samurai Incubate (center right) discuss open innovation during a seminar at Base Q in Tokyo.

Keiichiro Koumura of Mitsui Fudosan (center left) and Hideaki Nagano of Samurai Incubate (center right) discuss open innovation during a seminar at Base Q in Tokyo.japan brandvoice

Looking to the future

As for SCOT, Muragaki hopes to spread the technology to other hospital facilities such as intensive care units, and apply it to other forms of surgery such as vascular operations. He also hopes to take the technology overseas.

“Most doctors are resistant to change. Before they try SCOT, surgeons don’t regard it as something that’s necessary but once they give it a go, their view changes,” says Muragaki. “After brain surgeries, we want to try the technology on bone tumors, and keep going. If you could do all surgeries with SCOT, it would decrease risks and increase benefits. That’s something we can work toward.”

To find out more about SCOT, visit the university’s website here.

For more on the Japanese Government’s innovations and technologies, please click here.

Japan is changing. The country is at the forefront of demographic change that is expected to affect countries around the world. Japan regards this not as an onus but as

Source: Open Innovation In Japan Breaks New Ground In The Operating Room

The Microseconds That Can Rule Out Relative Time! — Lucid Being

The Microseconds That Can Rule Out Relative Time! According to Albert Einstein’s Theory Of Special Relativity, your time and my time are different, subject to and conditional to the question of your speed of movement and my speed of movement. The speed in which we are moving toward each other or the speed in which […]

via The Microseconds That Can Rule Out Relative Time! — Lucid Being

Is Anti-Gravity Real? Science Is About To Find Out – Ethan Siegel

1.jpg

One of the most astonishing facts about science is how universally applicable the laws of nature are. Every particle obeys the same rules, experiences the same forces, and sees the same fundamental constants, no matter where or when they exist. Gravitationally, every single entity in the Universe experiences, depending on how you look at it, either the same gravitational acceleration or the same curvature of spacetime, no matter what properties it possesses. At least, that’s what things are like in theory. In practice, some things are notoriously difficult to measure……..

Read more: https://www.forbes.com/sites/startswithabang/2018/10/26/is-anti-gravity-real-science-is-about-to-find-out/#4de36b849a79

 

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

 

Welcome To Medicare’s Open Season Your Head Is About To Explode – Howard Gleckman

1.jpg

It is Medicare open season. And, let’s face it, nobody has any idea what to do. The other night, I got a call from a friend who works in the long-term care advocacy world. She will soon turn 65 and is confronting the reality of enrolling in Medicare. She has been doing diligent research and creating detailed spreadsheets. And she is baffled. Some choice is good. So is competition. But needless complexity is something else entirely. And we know from behavioral science that, faced with too many choices, humans often make poor decisions or …do nothing………

Read more: https://www.forbes.com/sites/howardgleckman/2018/10/19/welcome-to-medicares-open-season-your-head-is-about-to-explode/#368279248edc

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

When Neil Armstrong Went to the Moon, He Brought Souvenirs of the Wright Brothers’ Flight. Now They’re for Sale — TIME

In July of 1969, as Neil Armstrong and his crew headed toward the moon, the pioneering astronaut carried with him a very special souvenir, as an homage to another set of pioneers who paved his way. Armstrong had with him remnants of fabric and the propeller of the Wright Flyer, the craft flown by Armstrong’s…

via When Neil Armstrong Went to the Moon, He Brought Souvenirs of the Wright Brothers’ Flight. Now They’re for Sale — TIME

 

 

 

Your kindly Donations would be so effective in order to fulfill our future research and endeavors – Thank you

 

%d bloggers like this:
Skip to toolbar